| 注册
首页|期刊导航|北京测绘|基于深度学习的野生动物图像识别研究综述

基于深度学习的野生动物图像识别研究综述

杨拂晓 费龙 闫泰辰

北京测绘2024,Vol.38Issue(9):1237-1242,6.
北京测绘2024,Vol.38Issue(9):1237-1242,6.DOI:10.19580/j.cnki.1007-3000.2024.09.001

基于深度学习的野生动物图像识别研究综述

Review of deep learning-based wildlife image recognition studies

杨拂晓 1费龙 1闫泰辰2

作者信息

  • 1. 长春师范大学 地理科学学院,吉林 长春 130032
  • 2. 吉林省林业勘察设计研究院,吉林 长春 130022
  • 折叠

摘要

Abstract

The deepening of national attention to the construction of ecological civilization and the major breakthrough of computer ability provide a new opportunity for realizing more efficient and accurate wildlife image recognition.The deep learning(DL)technology based on computer vision has played a great advantage in the field of image recognition.The application of the DL algorithm to wildlife image recognition can capture more detailed and accurate wildlife information and thus better help managers identify and monitor wildlife and protect the ecological environment and species diversity.This paper started with two aspects of public datasets and field data acquisition,analyzed the research status of deep learning,and introduced the research progress of the DL algorithm in wildlife image recognition.The paper focused on the present situation of regional convolutional neural networks(R-CNNs)and YOLO algorithms,so as to provide a theoretical basis for more efficient wildlife image recognition and offer new ideas for image recognition.

关键词

深度学习(DL)/卷积神经网络(CNN)/野生动物/图像识别

Key words

deep learning(DL)/convolutional neural network(CNN)/wildlife/image recognition

分类

天文与地球科学

引用本文复制引用

杨拂晓,费龙,闫泰辰..基于深度学习的野生动物图像识别研究综述[J].北京测绘,2024,38(9):1237-1242,6.

基金项目

吉林省科技发展计划(20230203001SF) (20230203001SF)

北京测绘

1007-3000

访问量0
|
下载量0
段落导航相关论文