| 注册
首页|期刊导航|计算机工程|基于生成对抗网络的深度伪造跨模型防御方法

基于生成对抗网络的深度伪造跨模型防御方法

戴磊 曹林 郭亚男 张帆 杜康宁

计算机工程2024,Vol.50Issue(10):100-109,10.
计算机工程2024,Vol.50Issue(10):100-109,10.DOI:10.19678/j.issn.1000-3428.0068106

基于生成对抗网络的深度伪造跨模型防御方法

Deepfake Cross-Model Defense Method Based on Generative Adversarial Network

戴磊 1曹林 1郭亚男 1张帆 1杜康宁1

作者信息

  • 1. 北京信息科技大学信息与通信工程学院,北京 100101
  • 折叠

摘要

Abstract

To reduce social risks caused by the abuse of deepfake technology,an active defense method against deep forgery based on a Generative Adversarial Network(GAN)is proposed.Adversarial samples are created by adding imperceptible perturbation to original images,which significantly distorts the output of multiple forgery models.The proposed model comprises an adversarial sample generation module and an adversarial sample optimization module.The adversarial-sample generation module includes a generator and discriminator.After the generator receives an original image to generate a perturbation,the spatial distribution of the perturbation is constrained through adversarial training.By reducing the visual perception of the perturbation,the authenticity of the adversarial sample is improved.The adversarial sample optimization module comprises basic adversarial watermarking,deep forgery models,and discriminators.This module simulates black-box scenarios to attack multiple deep forgery models,thereby improving the attack and migration of adversarial samples.Training and testing are conducted on commonly used deepfake datasets Celebfaces Attributes(CelebA)and Labeled Faces in the Wild(LFW).Experimental results show that compared with existing active defense methods,the proposed method achieves a defense success rate exceeding 85%based on the cross-model active defense method and generates adversarial samples.Additionally,the method improves efficiency by 20-30 times compared with those of conventional algorithms.

关键词

深度伪造/对抗样本/主动防御/生成对抗网络/迁移性

Key words

deepfake/adversarial samples/active defense/Generative Adversarial Network(GAN)/generalization

分类

计算机与自动化

引用本文复制引用

戴磊,曹林,郭亚男,张帆,杜康宁..基于生成对抗网络的深度伪造跨模型防御方法[J].计算机工程,2024,50(10):100-109,10.

基金项目

国家自然科学基金(U20A20163,62001033,62201066) (U20A20163,62001033,62201066)

北京市教委科研计划(KZ202111232049,KM202111232014). (KZ202111232049,KM202111232014)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文