|国家科技期刊平台
首页|期刊导航|食品科学|基于CARS-SPA特征提取的黄水淀粉近红外光谱定量模型优化

基于CARS-SPA特征提取的黄水淀粉近红外光谱定量模型优化OA北大核心CSTPCD

Optimization of Quantitative Modeling of Starch in Huangshui Based on Near-Infrared Spectral Feature Extraction Using Competitive Adaptive Reweighted Sampling Combined with Successive Projections Algorithm

中文摘要英文摘要

为提高白酒固态发酵的副产物黄水中淀粉含量预测模型精度和建模效率.采用傅里叶变换近红外光谱仪采集黄水光谱信息,利用一阶导数对光谱进行预处理,并结合偏最小二乘回归(partial least squares regression,PLSR)建立黄水淀粉定量预测模型.使用决定系数(R2)和预测均方误差(root mean square error of prediction,RMSEP)评价模型性能.光谱中含有大量冗余信息,为有效提升黄水淀粉含量检测精度和优化模型效率,将不同特征提取方法的优点结合,发现使用竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合连续投影算法(successive projections algorithm,SPA)提取的光谱特征所建立的PLSR模型,相较于未使用特征提取或仅使用单一特征提取所建立的模型均有明显提升.在单一使用CARS时,模型的R2为0.965 4,RMSEP为0.201 2%,而结合SPA后,R2为0.973 8,RMSEP为0.174 8%.此外,光谱维度从2 203个减少到了 126个,不仅提高了预测精度,也提升了建模效率.本研究提出的方法可作为黄水近红外定量模型优化的有效途径.

In order to improve the accuracy and efficiency of predictive modeling of the starch content of Huangshui,a byproduct of Baijiu production by solid-state fermentation,spectral information of Huangshui was collected using a Fourier transform near-infrared(FTIR)spectrometer and preprocessed by first derivative.Based on the preprocessed spectra,a predictive model for the starch content of Huangshui was developed using partial least squares regression(PLSR),and its performance was evaluated by determination coefficient(R)and root mean square error of prediction(RMSEP).As the original spectra contained a lot of redundant information,in order to effectively improve the detection accuracy and to optimize the modeling efficiency,the advantages of different feature extraction methods were combined.Finally,it was found that the PLSR model established by using the spectral features extracted by competitive adaptive reweighted sampling(CARS)combined with the successive projections algorithm(SPA)was significantly better than the model built without feature extraction or using single feature extraction.The results showed that the R2 and RMSEP of the model established using CARS were 0.965 4 and 0.201 2%,while those obtained using CARS-SPA were 0.973 8 and 0.174 8%,respectively.The spectral dimension reduced from 2 203 to 126 after the combination of CARS with SPA,which improved both the prediction accuracy and the modeling efficiency.The method proposed in this study provides an effective means to optimize near-infrared spectral quantitative modeling of starch in Huangshui.

母雯竹;张贵宇;张维;姚瑞;付妮

四川轻化工大学人工智能四川省重点实验室,四川宜宾 644005

轻工业

黄水近红外光谱竞争性自适应重加权算法连续投影算法偏最小二乘回归法

Huangshuinear infrared spectroscopycompetitive adaptive reweighted samplingsuccessive projections algorithmpartial least squares regression

《食品科学》 2024 (019)

8-14 / 7

四川省科技计划项目(2022YFS0554);泸州老窖研究生创新基金项目(LJCX-2022-8);酿酒生物技术及应用四川省重点实验室开放课题(NJ2022-06);四川轻化工大学科技成果转化专项(HXJY01);五粮液产学研合作项目(CXY2022ZR007)

10.7506/spkx1002-6630-20230725-283

评论