| 注册
首页|期刊导航|包装与食品机械|轻量化瓦楞纸板表面缺陷检测算法的研究

轻量化瓦楞纸板表面缺陷检测算法的研究

李西兴 刘涛 周宏娣 吴锐 陈佳豪

包装与食品机械2024,Vol.42Issue(5):88-95,8.
包装与食品机械2024,Vol.42Issue(5):88-95,8.DOI:10.3969/j.issn.1005-1295.2024.05.010

轻量化瓦楞纸板表面缺陷检测算法的研究

Study on surface defect detection algorithm of lightweight corrugated board

李西兴 1刘涛 1周宏娣 1吴锐 1陈佳豪1

作者信息

  • 1. 湖北工业大学机械工程学院,武汉 430068
  • 折叠

摘要

Abstract

To address the problems of slow detection speed and low recognition accuracy in corrugated cardboard surface defect detection,YOLOv5s-GCS was proposed as a lightweight corrugated cardboard surface defect detection algorithm based on the improved YOLOv5s.The original Conv module in the YOLOv5s backbone network was replaced with the GhostConv module,the C3 module was replaced with the C2f module,and the Replacement Attention Mechanism(SA) module was integrated.SA module was introduced at the terminal of YOLOv5s neck network;and tests were conducted to validate the algorithm by constructing the corrugated cardboard surface defect dataset.The test results show that the average precision mean mAP,recall R,and precision P of YOLOv5s-GCS algorithm are 95.0%,89.2%,and 92.5%,respectively,which are 2.3%,1.3%,and 2.8% higher than that of the original YOLOv5s.The detection speed reaches 19.9 fps,which is 5.7 fps higher than that of the original YOLOv5s.YOLOv5s-GCS algorithm is more conducive to carry out corrugated cardboard surface defect detection migration deployment and practical applications.The study can provide a reference for real-time detection in the field of surface defects.

关键词

YOLOv5s/表面缺陷检测/置换注意力机制/GhostConv模块/C2f模块

Key words

YOLOv5s/surface defect detection/shuffle attention(SA)/GhostConv module/C2f module

分类

通用工业技术

引用本文复制引用

李西兴,刘涛,周宏娣,吴锐,陈佳豪..轻量化瓦楞纸板表面缺陷检测算法的研究[J].包装与食品机械,2024,42(5):88-95,8.

基金项目

国家自然科学基金项目(51805152) (51805152)

湖北省自然科学基金项目(2024AFB816) (2024AFB816)

湖北省重点研发计划项目(2023BEB043) (2023BEB043)

包装与食品机械

OA北大核心CSTPCD

1005-1295

访问量0
|
下载量0
段落导航相关论文