|国家科技期刊平台
首页|期刊导航|农机化研究|春大豆合理播期确定动态知识模型构建

春大豆合理播期确定动态知识模型构建OA北大核心

Construction of Dynamic Knowledge Model for Determining Reasonable Sowing Date of Spring Soybean

中文摘要英文摘要

为提高春大豆播种期确定的时效性和准确性,利用农田信息采集系统获取土壤墒情及环境信息,并根据大豆播种进程与适宜环境、土壤墒情同步原理,采用隶属函数方法,将播种农艺要求与播种影响因素间的关系函数化,建立春大豆合理播期确定知识模型;并利用2 个不同生态点的气象与土壤温湿度等参数,结合模型决策日期与2 年中各地实际播期及出苗情况,对春大豆合理播期确定模型进行了实例验证.结果表明:2021 年北 15、2022 年北 14 两块试验地播期确定模型输出结果与农田实际播期分别为 4 月 23 日、4 月 24 日与 5 月 7 日、5 月 10 日,月度误差分别为3.33%和9.68%,模型结果准确率分别为 96.67%和 90.32%.模型设计结果与当前高产春大豆实际农作制度体现较好的一致性和适用性,可以为农业生产者应用信息化手段确定春大豆播种期提供技术参考.

In order to improve timeliness and accuracy of determining the sowing date of spring soybean,the farmland in-formation collection system was used to obtain the soil moisture and environmental information.According to the principle of synchronization between the soybean sowing process and the appropriate environment and soil moisture,the member-ship function method was used to function the relationship between the sowing agronomic requirements and the sowing in-fluencing factors,and the knowledge model for determining the reasonable sowing date of spring soybean was established.The model validation uses the meteorological and soil temperature and humidity parameters of two different ecological sites,combined with the decision date of the model and the actual sowing date and seedling emergence situation in vari-ous regions in the past two years,to validate the model for determining the reasonable sowing date of spring soybean.The results showed that the output results of model for determining the sowing date of Bei15 in 2021 and Bei14 in 2022 were April 23,April 24,May 7 and May 10,respectively.The monthly error is 3.33%and 9.68%respectively,and the ac-curacy of the model results is 96.67%and 90.32%respectively.The results of the model design are in good agreement and applicability with the current high-yield spring soybean actual farming system,which can provide a technical refer-ence for agricultural producers to determine the sowing date of spring soybean by means of information technology.

关丛鑫;张伟;亓立强;石文强;李金阳

黑龙江八一农垦大学 工程学院,黑龙江 大庆 163319||黑龙江省保护性耕作工程技术研究中心,黑龙江 大庆 163319黑龙江八一农垦大学 工程学院,黑龙江 大庆 163319||黑龙江省保护性耕作工程技术研究中心,黑龙江 大庆 163319||农业农村部大豆机械化生产重点实验室,黑龙江 大庆 163319

农业科学

春大豆播期知识模型农田信息决策

spring soybeansowing dateknowledge modelfarmland informationpolicy decision

《农机化研究》 2025 (001)

1-6 / 6

国家现代农业产业技术体系资助项目(CARS-04-PS30)

10.13427/j.issn.1003-188X.2025.01.001

评论