|国家科技期刊平台
首页|期刊导航|数据与计算发展前沿|基于多维度数据驱动的商品需求量预测研究

基于多维度数据驱动的商品需求量预测研究OA

A Study on Multidimensional Data-Driven Commodity Demand Forecasting

中文摘要英文摘要

[目的]面向烟草行业,为改善零售户商品资源分配策略,优化货源供应政策,解决依据历史销售水平和经验分配商品时存在的缺少数据理论体系支撑、货源分配不合理、货源供应政策落后和业务操作效率低等问题.[方法]提出了多维数据驱动的神经网络模型,数据包括商户内部订单数据和外部商圈等,通过对数据进行异常样本删除、特征构造和划分训练验证集后,在训练集上依次通过Attention层、Dense层和LightGBM模型.[结果]最终在测试集上实现了96.57%的预测准确度.[结论]该技术基于卷烟系统多维数据,能够建立具备高度适应性与灵活性的需求量预测体系,打破现行按档位确定需求量的操作模式,实现高精度的预测准确率,为企业卷烟智能投放提供技术支持.

[Objective]For the tobacco industry,it is crucial to improve the commodity resource allocation strategy of retailers,optimize the supply policy of commodities,and solve the problems of unrea-sonable allocation of goods,behindhand commodities supply policy and low efficiency of business operations,which exist in the current commodities allocation based on the historical sales level and experiences but lack of systematic data theory support[Methods]A multi-dimensional data-driven neural network model is proposed.the data used by the model includes merchant internal order data and external shopping area,etc.By abnormal sample removal,feature construction,and partition of training and validation data sets,the attention layer,the dense layer,and the LightGBM model layer are passed successively on the training set.[Results]A prediction accuracy of 96.57%is finally achieved on the test set.[Conclusion]Based on the multi-di-mensional data of the cigarette system,this technology can establish a highly adaptable and flexible demand fore-casting system,break the current operation mode of determining the demand according to the stalls,realize high prediction accuracy,and provide technical support for the intelligent placement of cigarettes for enterprises.

陈宇镔;洪烨;崔文娟;黄敏毅;张锦玉

广东烟草广州市有限公司,营销管理中心,广东广州 510610中国科学院计算机网络信息中心,大数据部,北京 100083中国烟草总公司广东省公司,卷烟销售管理处,广东广州 510610

神经网络需求预测特征构造Attention层LightGBM模型

neural networksdemand forecastingfeature constructionAttention layerLightGBM model

《数据与计算发展前沿》 2024 (005)

169-177 / 9

中国烟草总公司广东省公司科技项目"基于多维度数据驱动的零售客户精准投放模型研究"(粤烟科项202111)

10.11871/jfdc.issn.2096-742X.2024.05.016

评论