| 注册
首页|期刊导航|水利学报|基于自适应时序分解筛选的大坝变形预测模型

基于自适应时序分解筛选的大坝变形预测模型

谷宇 苏怀智 张帅 姚可夫 刘明凯 漆一宁

水利学报2024,Vol.55Issue(9):1045-1057,1070,14.
水利学报2024,Vol.55Issue(9):1045-1057,1070,14.DOI:10.13243/j.cnki.slxb.20230766

基于自适应时序分解筛选的大坝变形预测模型

Dam deformation prediction model based on self-adaptive temporal decomposition screening

谷宇 1苏怀智 2张帅 3姚可夫 1刘明凯 1漆一宁1

作者信息

  • 1. 河海大学水灾害防御全国重点实验室,江苏南京 210098||河海大学水利水电学院,江苏南京 210098
  • 2. 河海大学水灾害防御全国重点实验室,江苏南京 210098||河海大学水利水电学院,江苏南京 210098||河海大学水安全与水科学协同创新中心,江苏南京 210098
  • 3. 中国电建集团昆明勘测设计研究院有限公司,云南昆明 650051
  • 折叠

摘要

Abstract

High precision analysis and prediction of dam deformation is an important means to master dam work-ing behavior and diagnose dam anomalies.Aiming at the problems such as insufficient information feature mining,weak generalization ability and difficulty in accurate prediction of existing models,grey Wolf algorithm was used to optimize the complete ensemble empirical mode decomposition with adaptive noise to solve the multidimensional parameter calibration problem,and threshold evaluation indexes were used to retain the effective information fea-tures of deformation time series data.The cross-validation method is combined with recursive feature selection method,and the optimal factor subset is selected by multiple learners to remove redundant features,extract effec-tive information and enhance the interpretability of the model.Considering the characteristics of time series data,the number of steps in the time window of the bidirectional long short term memory neural network is optimized,and in order to construct dam deformation analysis and prediction model,several methods such as noise reduction of dam deformation data and input of optimal feature factors are used.The results show that the model has the a-bility of accurately mining nonlinear information,and the prediction performance has been significantly improved,which can provide reference for dam safety monitoring.

关键词

大坝变形预测/灰狼算法/阈值降噪/双向长短期记忆神经网络/自适应噪声完备经验模态分解

Key words

dam deformation prediction/grey wolf algorithm/threshold noise reduction/bidirectional long short-term memory neural network/complete ensemble empirical mode decomposition with adaptive noise

分类

信息技术与安全科学

引用本文复制引用

谷宇,苏怀智,张帅,姚可夫,刘明凯,漆一宁..基于自适应时序分解筛选的大坝变形预测模型[J].水利学报,2024,55(9):1045-1057,1070,14.

基金项目

国家自然科学基金项目(52239009,51979093) (52239009,51979093)

水利学报

OA北大核心CSTPCD

0559-9350

访问量4
|
下载量0
段落导航相关论文