一类具有时变系数源项和应变项的半线性四阶波动方程解的高能爆破现象OA北大核心CSTPCD
Blow-up Phenomena for a Semilinear Fourth-Order Wave Equation with Time-varying Source and Strain Terms at High Energy Level
本文侧重研究一类具有时变系数源项和非线性应变项的半线性四阶波动方程Dirichlet及Navier初边值问题.利用非稳定集的不变性、反证法技巧及凹性引理,给出任意正初始能量级E(0)>0下解的有限时刻爆破结果.
This paper is concerned with the initial boundary value problem for a semilinear fourth-order wave equation with time-varying source and nonlinear strain terms under Dirichlet or Navier bound-ary condition.By utilizing the invariance of unstable set,contradiction argument and concavity method,we prove that the solution blows up in finite time at high energy level.
赵元章;徐文静
中国海洋大学数学科学学院,山东青岛 266100
数学
四阶波动方程时变系数源应变项高能爆破
Fourth-order wave equationTime-varying sourceStrain termBlow-up at high energy level
《应用数学》 2024 (004)
924-934 / 11
山东省自然科学基金面上项目(ZR2019MA072)
评论