Mechanism underlying the uprooting of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau, ChinaOACSTPCD
Characteristics of root pullout resistance determine the capacity to withstand uprooting and the slope protection ability of plants.However,mechanism underlying the uprooting of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau,China remains unclear.In this study,a common taproot-type shrub,Caragana korshinskii Kom.,in northeastern Qinghai-Xizang Plateau was selected as the research material.Mechanism of root-soil interaction of vertical root of C.korshinskii was investigated via a combination of a single-root pullout test and numerical simulation analysis.The results indicated that,when pulling vertically,axial force of the roots decreased with an increase in buried depth,whereas shear stress at root-soil interface initially increased and then decreased as burial depths increased.At the same buried depth,both axial force and shear stress of the roots increased with the increase in pullout force.Shear stress and plastic zone of the soil surrounding the root were symmetrically distributed along the root system.Plastic zone was located close to the surface and was caused primarily by tensile failure.In nonvertical pulling,symmetry of shear stress and plastic zone of the soil surrounding the root was disrupted.We observed larger shear stress and plastic zones on the side facing the direction of root deflection.Plastic zone included both shear and tensile failure.Axial force of the root system near the surface decreased as deflection angle of the pullout force increased.When different rainfall infiltration depths had the same vertical pulling force,root axial force decreased with the increase of rainfall infiltration depth and total root displacement increased.During rainfall infiltration,shear stress and plastic zone of the soil surrounding the root were prone to propagating deeper into the soil.These findings provide a foundation for further investigation of soil reinforcement and slope protection mechanisms of taproot-type shrub species in the loess area of northeastern Qinghai-Xizang Plateau and similar areas.
LIANG Shen;WANG Shu;LIU Yabin;PANG Jinghao;ZHU Haili;LI Guorong;HU Xiasong;
School of Geological Engineering,Qinghai University,Xining 810016,ChinaSchool of Geological Engineering,Qinghai University,Xining 810016,China Key Laboratory of Genozoic Resource&Environment in North Margin of the Tibet Plateau,Xining 810016,China
金属材料
Qinghai-Xizang Plateaushrub rootspullout testnumerical simulationmechanismroot-soil interaction
《Journal of Arid Land》 2024 (010)
P.1426-1443 / 18
This study was funded by the National Natural Science Foundation of China(42002283);We thank all of the anonymous reviewers for providing helpful comments for the manuscript.
评论