欠定性时变的卫星MIMO通信系统盲分离抗干扰方法OA北大核心CSTPCD
Anti-jamming method based on underdetermined time-varying blind source separation for satellite MIMO communication systems
针对多地球同步轨道(Geostationary Earth Orbit,GEO)卫星多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统下行链路遭遇无人机集群恶意干扰场景中,干扰无人机数量时变且未知以及地球站观测信号信干比(Signal to Interference Ratio,SIR)和信噪比(Signal-to-Noise Ratio,SNR)低的问题,提出了特征金字塔网络(Feature Pyramid Network,FPN)和双向长短时记忆(Bidirectional Long Short Term Memory,BiLSTM)网络相结合的FPN-BiLSTM网络架构及其训练方法,实现源数目时变的端到端欠定混合盲源分离.该算法无须进行干扰源数目估计,也无须经历传统的信号解调,即可从欠定混合的观测中直接提取期望信号的比特序列.仿真结果表明,与其他基于深度学习网络的欠定混合盲源分离算法相比,提出的算法在源信号数目时变且SNR和SIR均很低的场景中,如SNR=0 dB和SIR=-18dB,算法的误码率可低至10-4,具有良好的干扰消除性能.
In response to the problem of time-varying and unknown number of interfering Unmanned Aerial Vehicles(UAVs),as well as low Signal to Interference Ratio(SIR)and Signal to Noise Ratio(SNR)of Earth station observation signals in the downlink of the Multiple Input Multiple Output(MIMO)communication system of Geostationary Earth Orbit(GEO)satellites facing malicious interference from UAV clusters,this paper proposes a FPN-BiLSTM network architecture and its training method that combines Feature Pyramid Network(FPN)and Bidirectional Long Short Term Memory(BiLSTM)networks to achieve end-to-end underdetermined blind source separation with time-varying number of sources.By applying this algorithm,the expected signal bit sequence is directly extracted from underdetermined mixing observation signals without the need for estimating the number of interference sources or traditional signal demodulation.The simulation result shows that compared to other underdetermined blind source separation algorithms based on deep learning networks,the proposed algorithm has a low bit error rate and good interference cancellation performance in scenarios where the number of source signals is time-varying and SNR and SIR are as low as 0 dB and-18 dB respectively.
秦媛;张杭;朱宏鹏
陆军工程大学通信工程学院,南京,210007
电子信息工程
卫星MIMO通信系统无人机集群干扰欠定盲源分离FPNBiLSTM
satellite MIMO communication systemUAV cluster interferenceunderdetermined blind source separationFPNBiLSTM
《南京大学学报(自然科学版)》 2024 (005)
723-734 / 12
评论