| 注册
首页|期刊导航|江西建材|基于YOLOv5s户外场景下混凝土裂缝识别模型改进

基于YOLOv5s户外场景下混凝土裂缝识别模型改进

邱锐 孙勇 解可悦 刘松林 尹萌 杨安琪 汤丰莹

江西建材Issue(9):96-98,3.
江西建材Issue(9):96-98,3.

基于YOLOv5s户外场景下混凝土裂缝识别模型改进

Enhancement of Concrete Crack Identification Model in Outdoor Environment Utilizing YOLOv5s

邱锐 1孙勇 2解可悦 1刘松林 1尹萌 1杨安琪 1汤丰莹1

作者信息

  • 1. 黑龙江科技大学建筑工程学院,黑龙江 哈尔滨 150022
  • 2. 黑龙江科技大学建筑工程学院,黑龙江 哈尔滨 150022||龙建路桥股份有限公司,黑龙江 哈尔滨 150006||哈尔滨工业大学交通科学与工程学院,黑龙江 哈尔滨 150090
  • 折叠

摘要

Abstract

In recent years,the development of machine vision algorithms has promoted the application of crack detection technology based on deep learning in concrete buildings.The technology uses Xiaomi 13 mobile phones and DJI drones to collect 3 134 images containing cracks,corrosion,and pits in natural environments to increase the generalization ability of the model.Improve the accuracy and efficiency of crack de-tection,especially in practical applications of non-fixed ends.To achieve this goal,the research introduced Mosaic-9 data enhancement and ECA and CA attention mechanisms to optimize the YOLOv5s model.Use the YOLOv5s target detection network and introduce the GhostNet network to optimize computational efficiency.The effectiveness of the lightweight optimization strategy is verified by an ablation experiment.The introduction of GhostNet increases the F1 score by 113.17%,the model recognition speed by 62.3%,and the recall rate by 23%,with a slight increase in model parameters and computation.The research shows that combining data enhancement,attention mechanism,and light-weight network optimization can effectively improve the accuracy and efficiency of concrete crack detection.

关键词

混凝土裂缝/机器视觉/YOLOv5s

Key words

Fissures in concrete/Machine vision technology/YOLOv5s

分类

建筑与水利

引用本文复制引用

邱锐,孙勇,解可悦,刘松林,尹萌,杨安琪,汤丰莹..基于YOLOv5s户外场景下混凝土裂缝识别模型改进[J].江西建材,2024,(9):96-98,3.

基金项目

黑龙江省级大学生创新创业训练项目《基于机器视觉技术的混凝土外观检测与损伤识别》(项目编号:S202310219008). (项目编号:S202310219008)

江西建材

1006-2890

访问量0
|
下载量0
段落导航相关论文