| 注册
首页|期刊导航|电子与封装|基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究

基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究

于鹏举 代岩伟 秦飞

电子与封装2024,Vol.24Issue(12):14-24,11.
电子与封装2024,Vol.24Issue(12):14-24,11.DOI:10.16257/j.cnki.1681-1070.2024.0162

基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究

Research on Thermal Fatigue Life Prediction of Key Interconnect Structures of SiC Power Devices Based on SVR Data-Driven Model

于鹏举 1代岩伟 1秦飞1

作者信息

  • 1. 北京工业大学电子封装技术与可靠性研究所,北京 100124
  • 折叠

摘要

Abstract

Interconnect reliability of sintered nano silver is critical for SiC modules.With the deepening of the cross-research between artificial intelligence and packaging reliability,the development of data-driven interconnection reliability evaluation methods has become one of the forefront issues in this field.Taking the typical SiC interconnect structure as the research object,the thermal fatigue life is used as the evaluation index,and the key factors such as chip size,sintered nano silver layer size and mechanical parameters are comprehensively studied,a data-driven prediction model for thermal fatigue life of sintered nano silver based on support vector regression(SVR)model is constructed,and the proposed data-driven model is quantitatively examined and verified comprehensively.By studying the correlation matrix of key interconnect parameters,it is found that increasing the thickness of sintered silver layer can improve the life of interconnect structure,and the elastic modulus of sintered silver layer and the thickness of SiC chip have adverse effects on the interconnect reliability.The research results can be used to guide the optimization design of SiC interconnect layer.

关键词

封装技术/功率模块/烧结纳米银/疲劳寿命/机器学习

Key words

packaging technology/power module/sintered nano silver/fatigue life/machine learning

分类

信息技术与安全科学

引用本文复制引用

于鹏举,代岩伟,秦飞..基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究[J].电子与封装,2024,24(12):14-24,11.

基金项目

国家自然科学基金(12272012) (12272012)

电子与封装

1681-1070

访问量0
|
下载量0
段落导航相关论文