| 注册
首页|期刊导航|水下无人系统学报|基于深度学习神经网络的水中爆炸靶板变形响应预测研究

基于深度学习神经网络的水中爆炸靶板变形响应预测研究

李治国 马峰 朱炜 贾曦雨 李一凡 陈雷

水下无人系统学报2024,Vol.32Issue(6):1045-1052,1062,9.
水下无人系统学报2024,Vol.32Issue(6):1045-1052,1062,9.DOI:10.11993/j.issn.2096-3920.2024-0069

基于深度学习神经网络的水中爆炸靶板变形响应预测研究

Prediction of Deformation Response of Target Plate in Underwater Explosion Based on Deep Learning Neural Network

李治国 1马峰 1朱炜 1贾曦雨 1李一凡 1陈雷1

作者信息

  • 1. 北京理工大学爆炸科学与安全防护全国重点实验室,北京,100081
  • 折叠

摘要

Abstract

The deformation of a target plate in underwater explosion is manifested as a complex nonlinear coupling interaction between the structure and the fluid under the impact of shock waves.In this paper,a deep learning neural network is designed and optimized to predict the dynamic deformation displacement data of the target plate under different conditions of target plate thickness,shock factor,explosive dosage,and explosion distance.The coefficient of determination and accuracy of prediction on the test set reach 0.99 and 0.95,respectively.Compared with 25 simulation conditions,the explosion deformation response analysis graph formed by 9 261 working conditions based on the prediction model can cover a more detailed range of characteristic parameters and the trend of maximum deformation variation,providing important reference for underwater weapon design and underwater protection applications.

关键词

水中爆炸/深度学习/神经网络/变形响应/靶板

Key words

underwater explosion/deep learning/neural network/deformation response/target plate

分类

军事科技

引用本文复制引用

李治国,马峰,朱炜,贾曦雨,李一凡,陈雷..基于深度学习神经网络的水中爆炸靶板变形响应预测研究[J].水下无人系统学报,2024,32(6):1045-1052,1062,9.

基金项目

国家自然基金委区域联合基金重点项目(U20A2071). (U20A2071)

水下无人系统学报

OACSTPCD

2096-3920

访问量0
|
下载量0
段落导航相关论文