首页|期刊导航|茶叶科学|基于改进YOLOv8n的茶树嫩芽识别

基于改进YOLOv8n的茶树嫩芽识别OA北大核心CSTPCD

Research on Tea Bud Recognition Based on Improved YOLOv8n

中文摘要英文摘要

在复杂自然环境下对茶树嫩芽进行精确识别是实现农业机器人智能化采摘茶树嫩芽的关键技术之一.针对茶园复杂环境下茶树嫩芽识别率低的问题,提出了一种基于改进YOLOv8n的茶树嫩芽检测方法.使用荣耀80手机采集茶树嫩芽图片,并对图片进行标注,按照训练集、验证集、测试集8∶1∶1的比例划分数据集.为有效提取嫩芽特征并减少模型冗余计算和内存访问,采用FasterNet模型替换YOLOv8n网络结构的骨干网络进行特征提取;为抑制茶园环境背景信息、增强模型对嫩芽的特征提取能力,在主干网络尾部(SPPF模块后)引入全局注意力机制(Global attention mechanism,GAM);在Neck网络中引入上下文引导(Context guided,CG)模块,学习茶树嫩芽局部特征和周围环境的联合特征,进一步提高茶树嫩芽的识别准确率.利用构建的茶树嫩芽数据集对改进的YOLOv8n算法进行训练和测试.消融试验验证结果显示,FasterNet网络、GAM注意力机制和CG模块均有效提高了YOLOv8n模型的识别准确率.改进的YOLOv8n模型在多类别的茶树嫩芽数据集上平均准确率(Mean average accuracy,mAP)为94.3%;相较于原YOLOv8n模型,对茶树单芽、一芽一叶、一芽二叶的识别mAP分别提高了2.2个百分点、1.6个百分点、2.7个百分点.以YOLOv3-tiny、YOLOv3、YOLOv5m、YOLOv7-tiny、YOLOv7和YOLOv8n模型进行对比试验,结果显示,改进的YOLOv8n模型对茶树嫩芽识别的效果最佳,说明改进的YOLOv8n模型能有效提升茶树嫩芽识别准确率.研究结果可为智能化茶叶采摘机器人的开发提供技术支撑.

Accurate recognition of tea buds in complex natural environment is one of the key technologies to realize intelligent picking of tea buds by agricultural robots.To address the problem of low recognition accuracy of tea buds in complex environment of tea gardens,a tea bud recognition method based on improved YOLOv8n was proposed.The Honor Mobile Phone was used to collect the RGB images of tea buds,and the image annotation of tea buds was completed.The labeled data was divided according to the 8∶1∶1 radio of the training set and test set.To effectively extract bud features and reduce model redundancy calculation and memory access,FasterNet was used to replace the backbone network of YOLOv8n model for feature extraction.To suppress the background information of the tea garden environment and enhance the feature extraction ability of tea buds,the global attention mechanism(GAM)module was introduced at the end of the backbone network(after the SPPF module).To further improve the recognition accuracy of tea buds,the Context Guided(CG)module was introduced into the Neck network to learn the joint features of local features and surrounding environment of tea buds.The improved YOLOV8n algorithm was trained and tested by using the constructed tea bud data set.The ablation experiments verify that the FasterNet network,GAM attention mechanism and CG module effectively improved the recognition accuracy of the YOLOv8n model.The mean average accuracy(mAP)of the improved YOLOv8n model on the multi-category tea bud data set was 94.3%.Compared with the original YOLOv8n model,the mAP of single bud,one bud and one leaf,and one bud and two leaves of tea buds increased by 2.2,1.6 and 2.7 percentage points,respectively.The improved YOLOv8n model was tested for performance comparison with YOLOv3-tiny,YOLOv3,YOLOv5m,YOLOv7-tiny,YOLOv7 and YOLOv8n models.The experimental results show that the improved YOLOv8n model has a higher accuracy in identifying tea buds.The experimental results demonstrate that the improved YOLOv8n model can effectively improve the accuracy of tea bud recognition and provide technical support for intelligent tea picking robots.

杨肖委;沈强;罗金龙;张拓;杨婷;戴宇樵;刘忠英;李琴;王家伦

贵州省茶叶研究所,贵州 贵阳 550006||贵州省茶叶产业技术体系茶叶加工与机械功能实验室,贵州 贵阳 550006贵州省茶叶研究所,贵州 贵阳 550006||国家茶叶产业技术体系遵义综合试验站,贵州 贵阳 550006

农业科学

深度学习茶树嫩芽图像识别YOLOv8n注意力机制采摘机器人

deep learningtea budsimage recognitionYOLOv8nattention mechanismspicking robot

《茶叶科学》 2024 (006)

949-959 / 11

国家重点研发计划项目(2022YFD1600802、2021YFD1100305)、国家现代农业产业技术体系(CARS-19)、贵州省科技计划项目(黔科合支撑[2024]一般158)、贵州省茶叶产业技术体系(GZCYCYJSTX-05)、黔农科博士基金[2024]10

评论