| 注册
首页|期刊导航|食用菌学报|基于YOLOv5s-GCE模型检测糙皮侧耳黄斑病

基于YOLOv5s-GCE模型检测糙皮侧耳黄斑病

张志勇 武同辉 刘靖宇 王硕 王宸 张燕青 郑维

食用菌学报2025,Vol.32Issue(1):89-101,13.
食用菌学报2025,Vol.32Issue(1):89-101,13.DOI:10.16488/j.cnki.1005-9873.2025.01.010

基于YOLOv5s-GCE模型检测糙皮侧耳黄斑病

YOLOv5s-GCE Model-Based Detection of Yellow Spot Disease in Pleurotus ostreatus

张志勇 1武同辉 1刘靖宇 2王硕 1王宸 1张燕青 1郑维1

作者信息

  • 1. 山西农业大学农业工程学院,山西晋中 030801
  • 2. 山西农业大学食品科学与工程学院,山西晋中 030801
  • 折叠

摘要

Abstract

For accurate and efficient detection of yellow spot disease in Pleurotus ostreatus,a model named YOLOv5s-GCE was developed based on the YOLOv5s model.YOLOv5s-GCE integrated a lightweight GhostNet structure,embedded a coordinate attention(CA)module into the YOLOv5s backbone,and substituted the original CIOU loss function of YOLOv5s with the enhanced intersection over union(EIOU)loss function.Using a self-built yellow spot disease dataset,ablation and comparison experiments were conducted on YOLOv5s-GCE.Subsequently,the model was deployed on an RK3588S AI development board for validation.The results showed that YOLOv5s-GCE outperformed YOLOv5s in terms of mean average precision(mAP)(92.7%,2.7%increase over the baseline),complexity(significantly reduced),parameter count(decreased by 44.7%),model size(decreased by 43.4%),and computational cost(decreased by 47.2%in giga floating-point operations per second,GFLOPs).The overall performance of YOLOv5s-GCE was superior to other typical object detection models,such as SSD,YOLOv7,YOLOv8n,and Faster R-CNN.The detection speed of YOLOv5s-GCE deployed on RK3588S development board was 30.49 frames per second with an mAP value of 90.2%,which satisfied requirements of real-time detection of P.ostreatus yellow spot disease.The results provided a reference for subsequent development of intelligent devices for detecting pathogenic diseases in edible fungi.

关键词

糙皮侧耳/黄斑病/YOLOv5s/目标检测

Key words

Pleurotus ostreatus/yellow spot disease/YOLOv5s/object detection

引用本文复制引用

张志勇,武同辉,刘靖宇,王硕,王宸,张燕青,郑维..基于YOLOv5s-GCE模型检测糙皮侧耳黄斑病[J].食用菌学报,2025,32(1):89-101,13.

基金项目

山西省现代农业产业技术体系建设专项(2024CYJSTX09) (2024CYJSTX09)

山西省研究生教育创新项目(2022Y339) (2022Y339)

食用菌学报

OA北大核心

1005-9873

访问量0
|
下载量0
段落导航相关论文