| 注册
首页|期刊导航|食品工业科技|深度学习在食品质量与安全检测中的应用进展

深度学习在食品质量与安全检测中的应用进展

郭兴 孙莹 刘树萍 杨雪欣 赵钜阳 江连洲

食品工业科技2025,Vol.46Issue(6):20-29,10.
食品工业科技2025,Vol.46Issue(6):20-29,10.DOI:10.13386/j.issn1002-0306.2024040375

深度学习在食品质量与安全检测中的应用进展

Advance in Application of Deep Learning in Food Quality and Safety Detection

郭兴 1孙莹 1刘树萍 1杨雪欣 1赵钜阳 1江连洲2

作者信息

  • 1. 哈尔滨商业大学旅游烹饪学院,黑龙江哈尔滨 150028
  • 2. 东北农业大学食品学院,黑龙江哈尔滨 150030
  • 折叠

摘要

Abstract

With the improvement of people's living standards,consumers'demand for food quality and safety is growing.Traditional methods for detecting food quality and safety can no longer meet the demand for efficient,accurate and reliable detection.Therefore,it becomes imperative to seek a more efficient and convenient detection method.On this basis,the rapid development of deep neural network-based machine learning technology,i.e.,deep learning,has brought new opportunities for food quality and safety detection.This paper focuses on the application progress of deep learning in food quality and safety detection.It introduces the principles of traditional machine learning and deep learning,and elaborates on the applications of deep learning in food origin tracing and food quality,including the detection of food defects,freshness,adulteration,and pathogens.Furthermore,it looks forward to the development trends of deep learning in the field of food quality and safety detection,aiming to provide theoretical references and research ideas for this field.

关键词

深度学习/神经网络/食品质量与安全/食品溯源/品质检测

Key words

deep learning/neural networks/food quality and safety/food traceability/quality detection

分类

轻工业

引用本文复制引用

郭兴,孙莹,刘树萍,杨雪欣,赵钜阳,江连洲..深度学习在食品质量与安全检测中的应用进展[J].食品工业科技,2025,46(6):20-29,10.

基金项目

国家自然科学基金面上项目(32372386) (32372386)

黑龙江省自然科学基金项目(LH2022C048). (LH2022C048)

食品工业科技

OA北大核心

1002-0306

访问量0
|
下载量0
段落导航相关论文