| 注册
首页|期刊导航|包装与食品机械|基于改进Mask R-CNN的对虾部位分割方法

基于改进Mask R-CNN的对虾部位分割方法

蔡礼扬 宁萌 杨九洲 陈义亮 马泓睿 王雨芊

包装与食品机械2025,Vol.43Issue(1):17-25,9.
包装与食品机械2025,Vol.43Issue(1):17-25,9.DOI:10.3969/j.issn.1005-1295.2025.01.003

基于改进Mask R-CNN的对虾部位分割方法

Shrimp body part segmentation method based on improved Mask R-CNN

蔡礼扬 1宁萌 2杨九洲 1陈义亮 1马泓睿 1王雨芊1

作者信息

  • 1. 江南大学 智能制造学院,江苏 无锡 214122
  • 2. 江南大学 智能制造学院,江苏 无锡 214122||江南大学 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

To address the challenge of precise part segmentation in shrimp processing,a deep learning-based method was proposed for semantic segmentation of shrimp body parts.The Simple Attention Module(SimAM)was integrated into the residual blocks of ResNet,the feature extraction network within the Mask R-CNN model.Additionally,the Sobel operator was employed for edge extraction,and an edge loss function was incorporated to enhance edge segmentation accuracy.Results demonstrated that the proposed model achieved a mean Intersection over Union(mIoU)of 94.14%,mean Pixel Accuracy(mPA)of 97.06%,and part-specific mIoU values of 84.12%for the head,83.79%for the thorax,and 94.31%for the tail.Comparative experiments with UNet,PSPNet,SegNet,and SegFormer under the same dataset and experimental conditions confirmed the superior segmentation performance of the proposed method.This study provides a novel approach for shrimp processing.

关键词

对虾/部位分割/Mask R-CNN模型/边缘监督/注意力机制

Key words

shrimp/part segmentation/Mask R-CNN model/edge supervision/attention mechanism

分类

轻工业

引用本文复制引用

蔡礼扬,宁萌,杨九洲,陈义亮,马泓睿,王雨芊..基于改进Mask R-CNN的对虾部位分割方法[J].包装与食品机械,2025,43(1):17-25,9.

基金项目

国家重点研发计划项目(2022YFD2100304) (2022YFD2100304)

国家自然科学基金资助项目(51705201) (51705201)

包装与食品机械

OA北大核心

1005-1295

访问量0
|
下载量0
段落导航相关论文