| 注册
首页|期刊导航|食品与机械|基于近红外光谱和PCA-DBN-SVM的猪肉种类识别

基于近红外光谱和PCA-DBN-SVM的猪肉种类识别

许新华 杨礼波 司夏萌

食品与机械2025,Vol.41Issue(3):50-56,7.
食品与机械2025,Vol.41Issue(3):50-56,7.DOI:10.13652/j.spjx.1003.5788.2024.60140

基于近红外光谱和PCA-DBN-SVM的猪肉种类识别

Pork species identification based on near-infrared spectroscopy and PCA-DBN-SVM

许新华 1杨礼波 2司夏萌3

作者信息

  • 1. 郑州西亚斯学院,河南 郑州 451150
  • 2. 华北水利水电大学,河南 郑州 450046
  • 3. 北京信息科技大学,北京 102206
  • 折叠

摘要

Abstract

[Objective]To improve the classification accuracy of pork species by building an identification model based on near-infrared spectroscopy and PCA-DBN-SVM.[Methods]Combining the near-infrared spectroscopy characteristics of pork,principal component analysis(PCA)is used for dimensionality reduction and feature extraction,and DBN-SVM is then applied for classification and recognition to construct a pork species identification method that integrates near-infrared spectroscopy characteristics with PCA-DBN-SVM model.[Results]Compared with the KNN model,RF model,ELM,and DBN combination model,the PCA-DBN-SVM model has the highest classification accuracy of pork species,which reaches 99.91%.[Conclusion]The PCA-DBN-SVM model exhibits superior classification accuracy.

关键词

支持向量机/主成分分析/近红外光谱/深度置信网络

Key words

support vector machine/principal component analysis/near-infrared spectroscopy/deep belief network

引用本文复制引用

许新华,杨礼波,司夏萌..基于近红外光谱和PCA-DBN-SVM的猪肉种类识别[J].食品与机械,2025,41(3):50-56,7.

基金项目

河南省科技攻关项目(编号:242102210021) (编号:242102210021)

河南省高等学校重点科研项目(编号:24B510016) (编号:24B510016)

食品与机械

OA北大核心

1003-5788

访问量0
|
下载量0
段落导航相关论文