| 注册
首页|期刊导航|沈阳农业大学学报|基于AWOA-BI-LSTM的光伏发电功率预测

基于AWOA-BI-LSTM的光伏发电功率预测

吴仕宏 张璧臣 吴佳文 武兴宇

沈阳农业大学学报2025,Vol.56Issue(2):131-143,13.
沈阳农业大学学报2025,Vol.56Issue(2):131-143,13.DOI:10.3969/j.issn.1000-1700.2025.02.014

基于AWOA-BI-LSTM的光伏发电功率预测

Photovoltaic Power Generation Prediction Based on AWOA-BI-LSTM

吴仕宏 1张璧臣 1吴佳文 2武兴宇1

作者信息

  • 1. 沈阳农业大学信息与电气工程学院,沈阳 110161
  • 2. 国网沈阳市东陵区供电公司,沈阳 110015
  • 折叠

摘要

Abstract

[Objective]Accurate prediction of photovoltaic(PV)power generation is crucial for integrating renewable energy into the grid,energy markets,and building energy management systems.To improve prediction accuracy,this study proposed a hybrid model,denoted as AWOA-Bi-LSTM,which combines an improved Whale Optimization Algorithm(AWOA)with a Bidirectional Long Short-Term Memory network(Bi-LSTM).To solve the problems of low optimization accuracy and slow convergence of the traditional Whale Optimization Algorithm(WOA),two improvement strategies,dynamic weight factors and adaptive parameter adjustment,are introduced to enhance the model's global search capability and convergence efficiency.[Methods]Based on the real PV power generation data and measured meteorological data,comparative experiments were conducted among AWOA-Bi-LSTM,WOA-Bi-LSTM,and GRNN.[Results]The R² values of AWOA-Bi-LSTM model on the test set and training set are 0.997 01 and 0.998 43,respectively;the RMSE values are 1.585 and 0.900 63,respectively;and the RPD are 20.160 4 for the test set and 25.935 7 for the training set.[Conclusion]The results demonstrate that the AWOA-Bi-LSTM outperforms conventional methods in terms of goodness of fit,prediction accuracy,and stability.It more effectively captures complex patterns and trends in time series data,substantially enhancing prediction performance.

关键词

光伏发电/功率预测/LSTM/BI-LSTM/WOA算法

Key words

photovoltaic power generation/power prediction/LSTM/BI-LSTM/WOA algorithm

分类

信息技术与安全科学

引用本文复制引用

吴仕宏,张璧臣,吴佳文,武兴宇..基于AWOA-BI-LSTM的光伏发电功率预测[J].沈阳农业大学学报,2025,56(2):131-143,13.

基金项目

国家自然科学基金项目(61903264) (61903264)

沈阳农业大学学报

OA北大核心

1000-1700

访问量0
|
下载量0
段落导航相关论文