| 注册
首页|期刊导航|包装与食品机械|TCN-Net:融合三重注意力机制与特征聚焦扩散的烟支缺陷检测网络

TCN-Net:融合三重注意力机制与特征聚焦扩散的烟支缺陷检测网络

吴庆华 张哲铭 赵德华

包装与食品机械2025,Vol.43Issue(2):30-38,9.
包装与食品机械2025,Vol.43Issue(2):30-38,9.DOI:10.3969/j.issn.1005-1295.2025.02.004

TCN-Net:融合三重注意力机制与特征聚焦扩散的烟支缺陷检测网络

TCN-Net:a cigarette defect detection network integrating triplet attention mechanism and feature focus-diffusion

吴庆华 1张哲铭 1赵德华2

作者信息

  • 1. 湖北工业大学 机械工程学院,武汉 430068||现代制造质量工程湖北省重点实验室,武汉 430068
  • 2. 湖北中烟工业有限责任公司 武汉卷烟厂,武汉 430040
  • 折叠

摘要

Abstract

To address the challenges in detecting minute and subtle defects(e.g.,punctures,yellow stains,oil spots,and hidden tobacco shred inclusions)during cigarette production and the limited ability to distinguish between easily confusable defects,this study proposes an improved defect detection network named TCN-Net.The network integrates a triplet attention mechanism to enhance features across channel,height,and width dimensions,significantly improving the detection capability for tiny targets.This innovation increases the mAP@0.5 for puncture defects by 2.4 percentage points.A feature focus-diffusion structure was designed to optimize the fusion of high-level semantic and low-level spatial features,effectively enhancing the differentiation of easily confusable defects(e.g.,oil spots vs.yellow stains),with respective mAP@0.5 improvements of 2.8 and 1.9 percentage points.The normalized Wasserstein distance(NWD)loss function was employed to refine target localization and boost small object detection accuracy.Experimental results demonstrate that compared to the baseline YOLOv8 model,TCN-Net achieves a 5.4 percentage point improvement in mAP@0.5,outperforming mainstream detection algorithms including SSD,YOLOv5,and YOLOv7 in comprehensive performance.This research provides a more precise solution for tobacco industrial defect detection.

关键词

图像处理/烟支缺陷检测/深度学习/注意力机制/NWD损失函数

Key words

image processing/cigarette defect detection/deep learning/attention mechanism/NWD loss function

分类

轻工业

引用本文复制引用

吴庆华,张哲铭,赵德华..TCN-Net:融合三重注意力机制与特征聚焦扩散的烟支缺陷检测网络[J].包装与食品机械,2025,43(2):30-38,9.

基金项目

国家自然科学基金项目(51275158) (51275158)

湖北省创新群体项目(2022CFA006) (2022CFA006)

包装与食品机械

OA北大核心

1005-1295

访问量0
|
下载量0
段落导航相关论文