| 注册
首页|期刊导航|水下无人系统学报|基于轻量化门控卷积网络的实时Transformer水下目标检测方法

基于轻量化门控卷积网络的实时Transformer水下目标检测方法

李瑜辉 崔慧霞 李耀敏 贾森平

水下无人系统学报2025,Vol.33Issue(2):229-237,9.
水下无人系统学报2025,Vol.33Issue(2):229-237,9.DOI:10.11993/j.issn.2096-3920.2024-0182

基于轻量化门控卷积网络的实时Transformer水下目标检测方法

Real-Time Transformer Detection of Underwater Objects Based on Lightweight Gated Convolutional Network

李瑜辉 1崔慧霞 1李耀敏 2贾森平2

作者信息

  • 1. 东北大学机器人科学与工程学院,辽宁 沈阳,110189||中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳,110016
  • 2. 东北大学机器人科学与工程学院,辽宁 沈阳,110189
  • 折叠

摘要

Abstract

To address the challenges in underwater object detection algorithms,including difficult image feature processing,redundant model architectures,and excessive parameter numbers,this paper proposed a real-time Transformer detection method for underwater objects based on a lightweight gated convolutional network.This method first constructed a convolutional gated linear unit based on the gating mechanism to dynamically modulate feature transmission.Furthermore,on this basis,a gated channel interaction module was proposed to fully decouple the token mixer from the channel mixer.Additionally,for the token mixer,the structural reparameterization technique was introduced to significantly reduce the computational cost of the model during inference.The hybrid encoder conducted the intra-scale information exchange and multi-scale feature fusion of the three features extracted by the gated backbone network,thus realizing the high fusion of shallow high-frequency information and deep semantic spatial information.The proposed model carried out a large number of experiments on different modal datasets.The results show that the model's mAP@0.5 reaches 0.849,the overall number of parameters is 23.3×106,and the FPS detection frame rate is 136.8.While maintaining excellent detection accuracy,this model achieves a smaller number of model parameters and higher detection speed,with better overall performance than other models.The results reveal that compared to a series of excellent object detection models,the proposed model features sound detection performance and efficient real-time detection.

关键词

水下目标检测/轻量化网络/门控卷积/Transformer

Key words

underwater object detection/lightweight network/gated convolution/Transformer

分类

武器工业

引用本文复制引用

李瑜辉,崔慧霞,李耀敏,贾森平..基于轻量化门控卷积网络的实时Transformer水下目标检测方法[J].水下无人系统学报,2025,33(2):229-237,9.

基金项目

机器人学国家重点实验室开放基金资助(2024-O23). (2024-O23)

水下无人系统学报

2096-3920

访问量0
|
下载量0
段落导航相关论文