| 注册
首页|期刊导航|水下无人系统学报|融合重参数化与注意力机制的水下视觉多目标跟踪算法

融合重参数化与注意力机制的水下视觉多目标跟踪算法

李军毅 何铭乐 刘畅 徐雍

水下无人系统学报2025,Vol.33Issue(2):249-260,12.
水下无人系统学报2025,Vol.33Issue(2):249-260,12.DOI:10.11993/j.issn.2096-3920.2025-0012

融合重参数化与注意力机制的水下视觉多目标跟踪算法

Underwater Visual Multi-Target Tracking Algorithm Integrating Re-parameterization and Attention Mechanism

李军毅 1何铭乐 1刘畅 1徐雍1

作者信息

  • 1. 广东工业大学自动化学院,广东 广州,510006||广东工业大学粤港智能决策与协同控制联合实验室,广东 广州,510006||广东工业大学广东省智能决策与协同控制重点实验室,广东 广州,510006
  • 折叠

摘要

Abstract

The complex underwater environment can severely impact the stability of imaging devices and the quality of captured images,posing significant challenges for visual multi-target tracking in underwater unmanned autonomous systems.To address the difficulties arising from underwater camera jitter and image degradation,this paper proposed an underwater visual multi-target tracking algorithm that integrated re-parameterization and attention mechanisms,specifically tailored for underwater unmanned autonomous systems.First,to tackle the diversity of underwater targets and image degradation,an improved YOLOv8 algorithm based on re-parameterization and attention mechanism(RA-YOLOv8)was proposed.This algorithm effectively enhanced the network's multi-scale feature extraction capability and improved the detection accuracy of the model by integrating a structurally re-parameterized multi-scale feature extraction convolutional structure(DBB-RFAConv)and the AMSCE-attention mechanism.Then,to address the challenges of real-time target tracking caused by underwater camera jitter,an Inner-PIoUv2-enhanced ByteTrack algorithm(IP2-ByteTrack)was proposed.Inner-PIoUv2 was used as the similarity measure in the matching process of the tracking algorithm,which enhanced the model's performance in underwater detection and tracking tasks,improving the accuracy of tracking trajectory matching.Finally,based on the RA-YOLOv8 and IP2-ByteTrack algorithms,an underwater visual multi-target tracking algorithm that integrated re-parameterization and attention mechanisms for underwater autonomous systems was proposed.Experimental results show that the proposed algorithm exhibits excellent performance in complex underwater environments and can effectively address the shortcomings of existing methods in underwater multi-target tracking.

关键词

水下视觉/多目标跟踪/YOLO/ByteTrack/重参数化/注意力机制

Key words

underwater visual/multi-target tracking/YOLO/ByteTrack/re-parameterization/attention mechanism

分类

武器工业

引用本文复制引用

李军毅,何铭乐,刘畅,徐雍..融合重参数化与注意力机制的水下视觉多目标跟踪算法[J].水下无人系统学报,2025,33(2):249-260,12.

基金项目

国家自然科学基金项目资助(62206063、62121004、U22A2044) (62206063、62121004、U22A2044)

广东省基础与应用基础研究基金项目(2024A1515010369). (2024A1515010369)

水下无人系统学报

2096-3920

访问量0
|
下载量0
段落导航相关论文