| 注册
首页|期刊导航|粮油食品科技|谷物品质在线检测:基于近红外光谱的建模与迁移

谷物品质在线检测:基于近红外光谱的建模与迁移

崔晨昊 樊晨

粮油食品科技2025,Vol.33Issue(3):74-84,前插7,12.
粮油食品科技2025,Vol.33Issue(3):74-84,前插7,12.DOI:10.16210/J.CNKI.1007-7561.2025.03.006

谷物品质在线检测:基于近红外光谱的建模与迁移

Advances in Online Grain Quality Assessment:Near-Infrared Spectroscopic Modeling and Transfer Strategies

崔晨昊 1樊晨2

作者信息

  • 1. 布勒(中国)投资有限公司,创新中心,江苏 无锡 214142
  • 2. 西安交通大学,仪器科学与技术学院,精密微纳制造技术全国重点实验室,陕西 西安 710049
  • 折叠

摘要

Abstract

Grains,as the cornerstone of the global food supply,require quality inspection that is crucial for ensuring food safety and improving production efficiency.Traditional laboratory methods,while accurate,are time-consuming and costly,making them unsuitable for online,real-time monitoring.Near-infrared(NIR)spectroscopy,with its advantages of rapid,non-destructive,and multi-component simultaneous detection,has been widely applied in grain quality inspection.However,the high dimensionality,complexity of NIR spectral data,and variations among different instruments,environments,and samples pose challenges to modeling methods and model transfer.This review summarizes the application of NIR spectroscopy in online grain quality inspection,systematically outlining the development from traditional linear modeling(e.g.,partial least squares regression),nonlinear modeling(e.g.,support vector machines,artificial neural networks)to deep learning methods(e.g.,convolutional neural networks).It focuses on the strategies,challenges,and latest advances of model transfer techniques in addressing issues such as instrument differences,environmental changes,and sample diversity,including calibration transfer with and without standards.Furthermore,this review summarizes the challenges,experiences,and future research directions in practical industrial applications,aiming to provide references for the widespread application of NIR technology in the grain industry.

关键词

近红外光谱/谷物质量/在线检测/化学计量学/模型迁移/深度学习

Key words

near-infrared spectroscopy/grain quality,online detection/chemometrics/calibration transfer/deep learning

分类

轻工业

引用本文复制引用

崔晨昊,樊晨..谷物品质在线检测:基于近红外光谱的建模与迁移[J].粮油食品科技,2025,33(3):74-84,前插7,12.

粮油食品科技

OA北大核心

1007-7561

访问量0
|
下载量0
段落导航相关论文