| 注册
首页|期刊导航|食品科学|基于机器学习的抑菌活性物质筛选研究进展

基于机器学习的抑菌活性物质筛选研究进展

侯江霞 曹锋 孙丽 周志 姜金辉 王琛鑫 汪兰 石柳 吴文锦 郭晓嘉 陈胜 陈朗

食品科学2025,Vol.46Issue(14):366-375,10.
食品科学2025,Vol.46Issue(14):366-375,10.DOI:10.7506/spkx1002-6630-20241130-213

基于机器学习的抑菌活性物质筛选研究进展

Research Progress in the Screening of Antimicrobial Substances Based on Machine Learning

侯江霞 1曹锋 2孙丽 2周志 3姜金辉 1王琛鑫 1汪兰 4石柳 4吴文锦 4郭晓嘉 4陈胜 4陈朗4

作者信息

  • 1. 湖北民族大学生物与食品工程学院,湖北 恩施 445000||湖北省农业科学院农产品加工与核农技术研究所,湖北 武汉 430064
  • 2. 武汉梁子湖水产品加工有限公司,湖北 武汉 430212
  • 3. 湖北民族大学生物与食品工程学院,湖北 恩施 445000
  • 4. 湖北省农业科学院农产品加工与核农技术研究所,湖北 武汉 430064
  • 折叠

摘要

Abstract

The problem of bacterial resistance poses a significant threat to human and animal health as well as public safety,making the discovery of effective new antimicrobial compounds an urgent priority.Traditional methods for screening antimicrobial activity are often time-consuming and labor-intensive,with limited accuracy and objectivity.As a branch of artificial intelligence,machine learning algorithms have demonstrated exceptional capabilities in processing large-scale data,feature extraction,and model optimization,leading to their increasing application in the screening of antimicrobial substances.This paper reviews commonly used machine learning models,such as random forests,support vector machines,and deep learning,in antimicrobial activity screening.It provides an in-depth exploration of machine learning applications in the discovery of antimicrobial peptides,essential oils,and polyphenols,aiming to offer valuable insights into the application of machine learning techniques for identifying antimicrobial compounds.

关键词

机器学习/抑菌活性物质/筛选

Key words

machine learning/antimicrobial substances/screening

分类

轻工业

引用本文复制引用

侯江霞,曹锋,孙丽,周志,姜金辉,王琛鑫,汪兰,石柳,吴文锦,郭晓嘉,陈胜,陈朗..基于机器学习的抑菌活性物质筛选研究进展[J].食品科学,2025,46(14):366-375,10.

基金项目

湖北省自然科学基金杰青项目(2022CFA095) (2022CFA095)

湖北省重点研发计划项目(2023BBB103) (2023BBB103)

食品科学

OA北大核心

1002-6630

访问量0
|
下载量0
段落导航相关论文