| 注册
首页|期刊导航|食品与机械|基于极限学习机和晶体结构算法的污染食品早期检测

基于极限学习机和晶体结构算法的污染食品早期检测

祝福 刘瑞卿 潘克锋 赵蕊

食品与机械2025,Vol.41Issue(6):68-74,7.
食品与机械2025,Vol.41Issue(6):68-74,7.DOI:10.13652/j.spjx.1003.5788.2025.60011

基于极限学习机和晶体结构算法的污染食品早期检测

Early detection of contaminated food based on extreme learning machine and crystal structure algorithm

祝福 1刘瑞卿 2潘克锋 2赵蕊3

作者信息

  • 1. 商丘职业技术学院,河南 商丘 476100
  • 2. 河南农业大学,河南 郑州 450002
  • 3. 河北工程大学,河北 邯郸 056038
  • 折叠

摘要

Abstract

[Objective]To propose an early detection method for contaminated food based on the extreme learning machine and crystal structure algorithm.[Methods]The crystal structure algorithm is used to optimize feature selection,combined with the extreme learning machine for fast and efficient classification and detection,aiming to improve the accuracy and efficiency of early detection of contaminated food.[Results]Compared to traditional methods,the proposed approach shows significant improvements in accuracy(94.5%)and F1-score(93.2%).It also outperforms other state-of-the-art methods in recall rate and processing speed.Compared to the latest deep learning methods,the training time is reduced by about 30%,and the detection speed is improved by 25%.[Conclusion]The early detection method for contaminated food based on the extreme learning machine and crystal structure algorithm demonstrates clear advantages in improving detection accuracy,speeding up detection,and optimizing computational efficiency.It holds promising practical application prospects,especially for rapid and large-scale food safety detection.

关键词

极限学习机/晶体结构算法/污染食品/早期检测/特征选择/食品安全

Key words

extreme learning machine/crystal structure algorithm/contaminated food/early detection/feature selection/food safety

引用本文复制引用

祝福,刘瑞卿,潘克锋,赵蕊..基于极限学习机和晶体结构算法的污染食品早期检测[J].食品与机械,2025,41(6):68-74,7.

基金项目

国家自然科学基金资助项目(编号:11501525) (编号:11501525)

河南省高等学校重点科研项目(编号:20ZX003) (编号:20ZX003)

河南省自然科学基金项目(编号:222300420579) (编号:222300420579)

食品与机械

OA北大核心

1003-5788

访问量0
|
下载量0
段落导航相关论文