| 注册
首页|期刊导航|包装与食品机械|基于改进YOLOv8n的再造烟叶原料缺陷检测方法研究

基于改进YOLOv8n的再造烟叶原料缺陷检测方法研究

刘雄斌 刘志昌 胡念武 姚建武 陈一桢 唐天明 王晚霞 陈寒

包装与食品机械2025,Vol.43Issue(3):88-95,8.
包装与食品机械2025,Vol.43Issue(3):88-95,8.DOI:10.3969/j.issn.1005-1295.2025.03.010

基于改进YOLOv8n的再造烟叶原料缺陷检测方法研究

Research on defect detection method for reconstituted tobacco leaf raw materials based on improved YOLOv8n

刘雄斌 1刘志昌 1胡念武 1姚建武 1陈一桢 1唐天明 1王晚霞 1陈寒2

作者信息

  • 1. 湖北中烟工业有限责任公司,武汉 430040||湖北新业烟草薄片开发有限公司,武汉 430056||重组烟叶应用技术研究湖北省重点实验室,武汉 430040
  • 2. 湖北工业大学 机械工程学院,武汉 430068||现代制造质量工程湖北省重点实验室,武汉 430068
  • 折叠

摘要

Abstract

To address insufficient multi-scale representation capability and low detection efficiency in surface defect inspection of raw materials during slurry-processed reconstituted tobacco leaf production,an intelligent detection network based on an improved YOLOv8n architecture is proposed.The CSP-SDCV module was designed to replace the original C2f module,optimizing feature extraction efficiency.The ADown module was introduced to enhance multi-scale feature representation,while a lightweight shared convolutional detection head reduced parameter redundancy.Local window attention mechanism was incorporated to strengthen boundary sensitivity for occluded targets.Experimental results show the improved model achieved 98.1%mAP@50 on the tobacco leaf defect dataset,representing a 1.8 percentage point increase over baseline YOLOv8n,with parameter count and computational load reduced by 54.4%and 50.6%respectively.This research provides high-precision,low-resource solutions for automated quality inspection in tobacco industry.

关键词

烟叶缺陷检测/多尺度特征融合/轻量化检测头/局部窗口注意力/YOLOv8n

Key words

tobacco leaf defect detection/multi-scale feature fusion/lightweight detection head/local window attention/YOLOv8n

分类

轻工纺织

引用本文复制引用

刘雄斌,刘志昌,胡念武,姚建武,陈一桢,唐天明,王晚霞,陈寒..基于改进YOLOv8n的再造烟叶原料缺陷检测方法研究[J].包装与食品机械,2025,43(3):88-95,8.

基金项目

湖北省科技创新人才计划项目(2023DJCO68) (2023DJCO68)

湖北省中央引导地方科技发展专项(2024EIA041) (2024EIA041)

包装与食品机械

OA北大核心

1005-1295

访问量0
|
下载量0
段落导航相关论文