| 注册
首页|期刊导航|CT理论与应用研究|基于YOLOv8改进算法的铝、镁合金铸件DR图像缺陷检测

基于YOLOv8改进算法的铝、镁合金铸件DR图像缺陷检测

陈明飞 田帅

CT理论与应用研究2025,Vol.34Issue(4):534-542,9.
CT理论与应用研究2025,Vol.34Issue(4):534-542,9.DOI:10.15953/j.ctta.2025.089

基于YOLOv8改进算法的铝、镁合金铸件DR图像缺陷检测

Defect Detection in the DR Images of Aluminum and Magnesium Alloy Castings Based on the Improved YOLOv8 Algorithm

陈明飞 1田帅2

作者信息

  • 1. 中国航发哈尔滨东安发动机有限公司,哈尔滨 150066
  • 2. 北京航空航天大学江西研究院,南昌 330006
  • 折叠

摘要

Abstract

Existing algorithms can miss detecting small target defects owing to the complex background structure and noise in the DR images of aluminum and magnesium alloy castings.Therefore,this study proposes a defect detection method for the DR images of aluminum and magnesium alloy castings based on the improved YOLOv8 algorithm.First,a method integrating multi-scale enhancement and contrast-limited adaptive histogram equalization is proposed to effectively solve the problems of noise,low brightness,and insufficient information in the DR images of aluminum and magnesium alloy castings.Second,the YOLOv8 network structure is improved,and the context anchor attention(CAA)mechanism is introduced to pay more attention to key defect features;the cross-scale feature fusion module(CCFM)is introduced to enhance the expression ability of multi-scale features;the detection head is improved to enhance the detection ability of small targets.Experimental results showed that the precision,recall,and mean average precision(mAP)of the improved YOLOv8 algorithm on the defect dataset reached 92.7%,98.5%,and 92.4%,respectively,and the detection speed was 138 FPS that met the real-time requirements of intelligent production lines for defect detection in the DR images of aluminum and magnesium alloy castings.

关键词

YOLOv8/缺陷识别/注意力机制/图像增强

Key words

YOLOv8/defect recognition/attention mechanism/image enhancement

分类

信息技术与安全科学

引用本文复制引用

陈明飞,田帅..基于YOLOv8改进算法的铝、镁合金铸件DR图像缺陷检测[J].CT理论与应用研究,2025,34(4):534-542,9.

CT理论与应用研究

1004-4140

访问量0
|
下载量0
段落导航相关论文