| 注册
首页|期刊导航|CT理论与应用研究|基于CT扫描的锂电池Mylar膜破损智能检测方法

基于CT扫描的锂电池Mylar膜破损智能检测方法

李梦磊 夏迪梦 林国杨 赵树森

CT理论与应用研究2025,Vol.34Issue(4):551-559,9.
CT理论与应用研究2025,Vol.34Issue(4):551-559,9.DOI:10.15953/j.ctta.2025.061

基于CT扫描的锂电池Mylar膜破损智能检测方法

Intelligent Computed Tomography-based Detection Method for Lithium Battery Mylar Film Damage

李梦磊 1夏迪梦 1林国杨 1赵树森2

作者信息

  • 1. 南方科技大学深圳国家应用数学中心,广东 深圳 518055
  • 2. 南方科技大学深圳国家应用数学中心,广东 深圳 518055||深圳市龙华区高精尖检测技术研究院,广东 深圳 518000
  • 折叠

摘要

Abstract

With the rapid development and innovation of the lithium battery industry in recent years,battery safety performance testing has become increasingly important.As an essential component of lithium batteries,Mylar films can significantly improve the safety of lithium batteries.However,few studies have focused on damage detection in Mylar films.To address this issue,this study developed an innovative intelligent detection method for lithium battery Mylar film damage.This method utilizes computed tomography(CT)nondestructive testing technology to accurately obtain internal information on lithium batteries.Subsequently,by combining image-preprocessing techniques and deep learning algorithms,an intelligent detection model was constructed to efficiently and accurately detect defective batteries.Experimental results demonstrate that the proposed method achieves a high detection rate and low false-detection rate for Mylar film defects,highlighting its significant potential for practical applications.

关键词

锂电池Mylar膜/缺陷检测/Retinex图像增强/图像分类

Key words

Mylar films of lithium battery/defect detection/Retinex enhancement/image classification

分类

信息技术与安全科学

引用本文复制引用

李梦磊,夏迪梦,林国杨,赵树森..基于CT扫描的锂电池Mylar膜破损智能检测方法[J].CT理论与应用研究,2025,34(4):551-559,9.

基金项目

国家自然科学基金数学天元基金交叉重点专项(AI驱动的锂电池跨尺度模拟与关键材料设计(12426301)) (AI驱动的锂电池跨尺度模拟与关键材料设计(12426301)

深圳市优秀人才培养项目(新能源电池检测专用CT快速成像方法研究(RCBS20231211090724044)) (新能源电池检测专用CT快速成像方法研究(RCBS20231211090724044)

深圳市龙华区创新专项资金(20250113G43468522)). (20250113G43468522)

CT理论与应用研究

1004-4140

访问量0
|
下载量0
段落导航相关论文