| 注册
首页|期刊导航|机器人|基于高程图可着陆性分析的无人机可靠自主着陆与避险方法

基于高程图可着陆性分析的无人机可靠自主着陆与避险方法

王宁宁 仲训昱 谢涵 徐智凌 刘强

机器人2025,Vol.47Issue(3):448-458,11.
机器人2025,Vol.47Issue(3):448-458,11.DOI:10.13973/j.cnki.robot.240313

基于高程图可着陆性分析的无人机可靠自主着陆与避险方法

Reliable Autonomous Landing and Hazard Avoidance of Drones Based on Landability Analysis of Elevation Map

王宁宁 1仲训昱 2谢涵 1徐智凌 1刘强3

作者信息

  • 1. 厦门大学航空航天学院,福建厦门 361102
  • 2. 厦门大学航空航天学院,福建厦门 361102||厦门大学四川研究院,四川成都 610213
  • 3. 布里斯托大学工程数学与技术学院,英国布里斯托 BS81TH
  • 折叠

摘要

Abstract

The autonomous landing of drones in unknown environments poses a highly challenging task.To solve this problem,a safe and efficient LiDAR landing system is constructed.The proposed system leverages positioning data obtained from the perception information of LiDAR and the inertial measurement unit(IMU),projecting point clouds into an elevation map coordinate system.Utilizing Bayesian generalized kernel elevation inference and an enhanced dynamic point update algorithm,the system predicts,fills,and dynamically updates sparse elevation maps to generate dense and comprehensive elevation maps.Subsequently,a landability analysis map is generated through analyzing terrain geometric parameters in the elevation map such as slope,roughness,and step height.Then,the safest landing position is identified quickly from the landability analysis map by a GPU(graphics processing unit)acceleration method.In addition,an obstacle avoidance strategy based only on single frame point cloud is proposed to avoid the degradation of LiDAR localization near the landing point,and finally achieving the safe landing of the drones.The proposed method achieves excellent autonomous and safe landing results in tests in multiple complex simulation environments and real scenarios.

关键词

无人机/自主着陆/可着陆性分析/GPU加速

Key words

drone/autonomous landing/landability analysis/GPU(graphics processing unit)acceleration

引用本文复制引用

王宁宁,仲训昱,谢涵,徐智凌,刘强..基于高程图可着陆性分析的无人机可靠自主着陆与避险方法[J].机器人,2025,47(3):448-458,11.

基金项目

四川天府新区厦大研究院开放课题(202401YB005) (202401YB005)

江西省重点研发计划(20232BBE50004). (20232BBE50004)

机器人

OA北大核心

1002-0446

访问量0
|
下载量0
段落导航相关论文