| 注册
首页|期刊导航|机器人|基于预训练—微调框架的四足机器人结构—控制协同设计

基于预训练—微调框架的四足机器人结构—控制协同设计

陈词 余纪宇 李超 陆豪健 高洪波 熊蓉 王越

机器人2025,Vol.47Issue(5):625-635,11.
机器人2025,Vol.47Issue(5):625-635,11.DOI:10.13973/j.cnki.robot.240239

基于预训练—微调框架的四足机器人结构—控制协同设计

Structure-control Co-design of Quadruped Robots Based on Pre-training-Fine-tuning Framework

陈词 1余纪宇 1李超 2陆豪健 1高洪波 3熊蓉 1王越1

作者信息

  • 1. 浙江大学工业控制技术国家重点实验室,浙江 杭州 310027
  • 2. 杭州云深处科技有限公司,浙江 杭州 310058
  • 3. 中国科学技术大学信息科学技术学院,安徽 合肥 230026
  • 折叠

摘要

Abstract

In nature,animals with exceptional locomotion abilities,such as cougars,often possess asymmetric fore and hind legs,with their powerful hind legs acting as reservoirs of energy for leaps.Inspired by this biological concept,a co-optimization method for mechanical structures and control strategies is proposed,focusing on optimizing the leg length of the robot to enhance its overall motion performance.Firstly,a novel pretraining-finetuning framework is introduced,which not only guarantees optimal control strategies for each mechanical candidate but also improves the training efficiency of the algorithm.Additionally,spatial domain randomization is integrated with discount regularization,which remarkably improves the generalization ability of the pretraining network.Experimental results indicate that the proposed pretraining-finetuning framework significantly enhances the overall co-design performance with less time consumption.Moreover,the co-design strategy substantially exceeds the conventional method of independently optimizing control strategies,providing an innovative approach to enhancing the extreme parkour capabilities of quadruped robots.

关键词

四足机器人/结构—控制协同设计/深度强化学习

Key words

quadrupedal robot/structure-control co-design/deep reinforcement learning

引用本文复制引用

陈词,余纪宇,李超,陆豪健,高洪波,熊蓉,王越..基于预训练—微调框架的四足机器人结构—控制协同设计[J].机器人,2025,47(5):625-635,11.

基金项目

国家自然科学基金(62373322,62173293,62303407,U2013601). (62373322,62173293,62303407,U2013601)

机器人

OA北大核心

1002-0446

访问量0
|
下载量0
段落导航相关论文