| 注册
首页|期刊导航|机器人|基于动态权重复用的深度局部特征匹配器

基于动态权重复用的深度局部特征匹配器

曹雏清 郑方军 张紫阳 孙涛

机器人2025,Vol.47Issue(5):687-695,707,10.
机器人2025,Vol.47Issue(5):687-695,707,10.DOI:10.13973/j.cnki.robot.240146

基于动态权重复用的深度局部特征匹配器

A Deep Local Feature Matcher with Dynamic Weight Recycling

曹雏清 1郑方军 1张紫阳 1孙涛2

作者信息

  • 1. 安徽工程大学,安徽芜湖 241000||长三角哈特机器人产业技术研究院,安徽芜湖 241000
  • 2. 长三角哈特机器人产业技术研究院,安徽芜湖 241000||哈尔滨工业大学,黑龙江哈尔滨 150001
  • 折叠

摘要

Abstract

This paper aims to investigate the impact of deep Transformer networks on the matching performance by stacking more Transformer layers,and address the issue of the linear growth in model size as the number of Transformer layers increases.A local feature matcher named DWR-Matcher is proposed,which combines dynamic weight recycling technology and feature enhancement.Firstly,local features are aggregated using deep Transformer networks,which allow dynamic weight recycling between adjacent Transformer layers,thus reducing model parameters and effectively lowering the storage burden caused by increasing the number of network layers.Secondly,a feature enhancement module is introduced to prevent feature collapse due to excessive network depth,and the feature representation of each Transformer layer is enhanced through residual connections,enriching the diversity of features.Finally,experiments are conducted on the HPatches,InLoc,and MegaDepth datasets.The results show that DWR-Matcher achieves relative pose estimation accuracies of 44.20%,61.20%,and 74.90%on the MegaDepth dataset under thresholds of 5,10 and 20°,while the number of parameters is reduced by 8.3 MB,demonstrating the excellent performance of DWR-Matcher in various complex scenarios.

关键词

特征检测/局部特征匹配/权重复用/特征增强/Transformer网络

Key words

feature detection/local feature matching/weight recycling/feature enhancement/Transformer network

引用本文复制引用

曹雏清,郑方军,张紫阳,孙涛..基于动态权重复用的深度局部特征匹配器[J].机器人,2025,47(5):687-695,707,10.

基金项目

安徽省教育厅科学研究重点项目(KJ2020A0364) (KJ2020A0364)

国家自然科学基金(62073101). (62073101)

机器人

OA北大核心

1002-0446

访问量0
|
下载量0
段落导航相关论文