| 注册
首页|期刊导航|电子元件与材料|锂电池荷电状态估计方法研究进展

锂电池荷电状态估计方法研究进展

毕林楠 何亮 周立春 林瑛 廖家轩

电子元件与材料2025,Vol.44Issue(7):741-750,10.
电子元件与材料2025,Vol.44Issue(7):741-750,10.DOI:10.14106/j.cnki.1001-2028.2025.0090

锂电池荷电状态估计方法研究进展

Research progress on state-of-charge estimation method for lithium batteries

毕林楠 1何亮 2周立春 1林瑛 2廖家轩1

作者信息

  • 1. 电子科技大学长三角研究院(衢州),浙江衢州 324003||电子科技大学光电科学与工程学院,四川成都 611731
  • 2. 电子科技大学长三角研究院(衢州),浙江衢州 324003
  • 折叠

摘要

Abstract

Accurate estimation of the State of Charge(SOC)of lithium-ion batteries is a critical technical bottleneck for enabling safety assessment and lifespan prediction in the Battery Management Systems(BMS).Aiming at the limitations of the existing SOC estimation approaches,particularly in terms of adaptability under dynamic operating conditions,model generalization capability,and computational efficiency,the three major methodological frameworks were systematically reviewed:physics-based approaches,model-driven approaches,and data-driven approaches.Through a comprehensive examination of the multiple dimensions,the technological advancements,strengths,limitations,and applicable boundaries of each method were revealed.Physics-based empirical models establish mapping relationships through experimental calibration,which offer advantages such as high computational efficiency and low implementation complexity.However,they are heavily reliant on the initial calibration accuracy and suffer from poor robustness against disturbances and limited adaptability to the battery aging.Model-driven approaches,while achieving high accuracy and rapid convergence,require precise battery behavior modeling and accurate parameter identification.Data-driven approaches have strong adaptability and accuracy in varying conditions but require a large number of historical data and may face challenges such as overfitting and insufficient generalization.This paper summarizes the current state of research,highlights the key challenges and the future directions for advancing SOC estimation technologies for lithium-ion batteries based on the comparative analysis.

关键词

锂离子电池/荷电状态估计/综述/实验计算方法/滤波估计算法/数据驱动算法

Key words

lithium-ion battery/state of charge estimation/review/experimental computational methods/filter estimation algorithms/data-driven algorithms

分类

通用工业技术

引用本文复制引用

毕林楠,何亮,周立春,林瑛,廖家轩..锂电池荷电状态估计方法研究进展[J].电子元件与材料,2025,44(7):741-750,10.

基金项目

国家自然科学基金(52202104) (52202104)

浙江省衢州市大科创项目(2025K003,2024D028) (2025K003,2024D028)

电子元件与材料

OA北大核心

1001-2028

访问量0
|
下载量0
段落导航相关论文