| 注册
首页|期刊导航|电子元件与材料|基于改进粒子群算法的路面水膜厚度传感器的研究

基于改进粒子群算法的路面水膜厚度传感器的研究

王焕章 许高斌 蒋京奇

电子元件与材料2025,Vol.44Issue(7):774-781,8.
电子元件与材料2025,Vol.44Issue(7):774-781,8.DOI:10.14106/j.cnki.1001-2028.2025.0104

基于改进粒子群算法的路面水膜厚度传感器的研究

Pavement water film thickness sensor based on improved particle swarm optimization algorithm

王焕章 1许高斌 1蒋京奇1

作者信息

  • 1. 合肥工业大学微电子学院,安徽 合肥 230006
  • 折叠

摘要

Abstract

In order to address temperature drift and salinity-induced phase-amplitude shifts in water film thickness(WFT)sensors,a pavement WFT prediction model was developed by integrating an improved particle swarm optimization(IMPSO)algorithm with a backpropagation neural network(BPNN).Nonlinear inertia weights and adaptive learning factors into the traditional particle swarm optimization(PSO)framework were introduced in the IMPSO algorithm,and the premature convergence to local optima was effectively prevented.The initial weights and thresholds of the BPNN were optimized,slow convergence and local minima trapping typically encountered with BPNN were overcome.The experimental results show that the IMPSO-BPNN model outperforms the genetic algorithm-optimized BPNN(GA-BP)and PSO-optimized BPNN(PSO-BP)in terms of generalization ability,and a root mean square error(RMSE)of 0.3043 mm,a mean absolute error(MAE)of 0.2256 mm,and a goodness of fit(R2)of 0.9824 were achieved.With the prediction errors within±0.5 mm,an accuracy of 93.52%was achieved.The experimental validation confirms the high precision and strong robustness of the model in pavement WFT measurement,providing a reliable theoretical and technical foundation for application in practical engineering.

关键词

神经网络/粒子群优化/数据融合/路面检测

Key words

neural networks/particle swarm optimization/data fusion/pavement monitoring

分类

信息技术与安全科学

引用本文复制引用

王焕章,许高斌,蒋京奇..基于改进粒子群算法的路面水膜厚度传感器的研究[J].电子元件与材料,2025,44(7):774-781,8.

基金项目

国家重点研发计划(2022YFB3205903) (2022YFB3205903)

电子元件与材料

OA北大核心

1001-2028

访问量0
|
下载量0
段落导航相关论文