| 注册
首页|期刊导航|食品科学|基于增强检索生成框架的食品安全监管智能问答系统

基于增强检索生成框架的食品安全监管智能问答系统

毛典辉 王可浩 陈俊华 徐静婷

食品科学2025,Vol.46Issue(22):13-22,10.
食品科学2025,Vol.46Issue(22):13-22,10.DOI:10.7506/spkx1002-6630-20250408-059

基于增强检索生成框架的食品安全监管智能问答系统

An Intelligent Question Answering System for Food Safety Regulation Based on Retrieval-Augmented Generation Framework

毛典辉 1王可浩 1陈俊华 2徐静婷3

作者信息

  • 1. 北京工商大学计算机与人工智能学院,北京 100048
  • 2. 中国标准化研究院,北京 100191
  • 3. 中国标准化研究院,北京 100191||清华大学智库中心,北京 100084
  • 折叠

摘要

Abstract

The food safety regulation question answering(QA)task imposes high requirements on model accuracy,compliance,and interpretability.However,existing large language models(LLMs)face challenges in this domain,including imprecise knowledge retrieval,insufficient regulatory interpretation capabilities,and high computational costs.To address these issues,we proposed an intelligent question answering system based on the retrieval augmented generation(RAG)framework,with its core being the food safety regulation large language model(FSR-LLM).By optimizing database storage structures,retrieval strategies and the generator,FSR-LLM enhanced the quality and efficiency of food safety regulation QA.First,we constructed a food safety knowledge graph(KG)database to store regulatory provisions,food safety standards,and related data in a structured manner,improving the model's capability to organize and utilize domain-specific knowledge.Additionally,we introduced an LLM-guided retrieval strategy,which enables intelligent query parsing and accurately extracts highly relevant information from the food safety regulation KG,reducing the retrieval of irrelevant or misleading contents.For the generator module,we fine-tuned Qwen-7B-Chat using low-rank adaptation(LoRA),ensuring better alignment with food safety QA tasks,while significantly reducing computational costs,allowing training on a single RTX 4090 GPU.Experimental results on the proposed dataset demonstrated that FSR-LLM outperformed baseline models in BLEU-4,Rouge-L,and accuracy,exhibiting higher precision and semantic coherence.This work provides a low-cost,high-performance,and scalable solution for intelligent food safety regulation.

关键词

食品安全监管/检索增强生成/知识图谱/低秩适应/微调

Key words

food safety regulation/retrieval-augmented generation/knowledge graph/low-rank adaptation/fine-tuning

分类

轻工业

引用本文复制引用

毛典辉,王可浩,陈俊华,徐静婷..基于增强检索生成框架的食品安全监管智能问答系统[J].食品科学,2025,46(22):13-22,10.

基金项目

北京市自然科学基金项目(9232005) (9232005)

食品科学

OA北大核心

1002-6630

访问量0
|
下载量0
段落导航相关论文