| 注册
首页|期刊导航|电子元件与材料|基于改进型热敏感电参数的SiC IGBT级联神经网络结温预测模型

基于改进型热敏感电参数的SiC IGBT级联神经网络结温预测模型

黄玲琴 李乾坤 刘新超 师威鹏 谷晓钢

电子元件与材料2025,Vol.44Issue(9):1087-1097,11.
电子元件与材料2025,Vol.44Issue(9):1087-1097,11.DOI:10.14106/j.cnki.1001-2028.2025.0278

基于改进型热敏感电参数的SiC IGBT级联神经网络结温预测模型

Cascade neural network junction temperature prediction model for SiC IGBTs based on an improved temperature-sensitive electrical parameters

黄玲琴 1李乾坤 1刘新超 1师威鹏 1谷晓钢1

作者信息

  • 1. 江苏师范大学电气工程及其自动化学院,江苏徐州 221000
  • 折叠

摘要

Abstract

Silicon carbide insulated gate bipolar transistor(SiC IGBT)demonstrates promising application potential in high-voltage,high-temperature,and high-power domains.Effective control of the junction temperature(Tj)is a critical technology to ensure the safe operation of these devices.Therefore,accurately obtaining Tj information plays a vital role in the reliable operation of SiC IGBT.Typical combined thermally sensitive electrical parameters(TSEPs),such as on-state voltage drop(VCEon)and collector current(Ic),are expected to be utilized for Tj prediction in SiC IGBT.However,a complex nonlinear relationship existed between the combined TSEP(VCEon and Ic)and Tj,which led to unsatisfactory performance of Tj prediction models.To address this issue,a novel TSEP(the rate of change of Ic with respect to VCEon,dIc/dVCEon)was explored.It was found that integrating this TSEP for improving the combined TSEP can effectively mitigate the complex nonlinear relationship between the combined TSEP and Tj.Subsequently,a cascaded neural network model consisting of the sparrow search algorithm optimized back propagation neural network(SSA-BPNN)and a generalized regression neural network(GRNN)was constructed based on the improved combined TSEP for Tj prediction of SiC IGBT.Finally,the prediction accuracy of the model was evaluated using Silvaco TCAD simulation data.The results indicate that the proposed model achieves high-precision Tj prediction,with small error fluctuation and an average absolute error as low as 0.1 ℃.

关键词

碳化硅/绝缘栅双极晶体管/结温/热敏感电参数(TSEP)/神经网络/级联

Key words

SiC/IGBT/junction temperature/thermally sensitive electrical parameter(TSEP)/neural network/cascade

分类

电子信息工程

引用本文复制引用

黄玲琴,李乾坤,刘新超,师威鹏,谷晓钢..基于改进型热敏感电参数的SiC IGBT级联神经网络结温预测模型[J].电子元件与材料,2025,44(9):1087-1097,11.

基金项目

国家自然科学基金(62074071) (62074071)

电子元件与材料

OA北大核心

1001-2028

访问量1
|
下载量0
段落导航相关论文