相关度
- 相关度
- 发表时间
每页显示10条
- 每页显示10条
- 每页显示20条
- 每页显示30条
已找到 3 条结果
- 适于前馈神经网络的LM-QuasiNewton综合学习新方法北大核心CSCDCSTPCD摘要:为实时解决神经网络学习过程中可能遇到的大残量时的收敛问题,将LM算法与QuasiNewton优化算法结合,构建了一种综合学习算法(LM-QuasiNewton算法).仿真算例表明,该算法较好地解决了残量问题,收敛性与稳定性优于其它权值算法.合学习算法.仿真实例表明,该算法较好地解决了残量问题,在收敛性与稳定性方面优于其它权值算法.
- 前馈神经网络学习新算法及其仿真CSTPCD摘要:目前基于高斯牛顿法及其衍生算法的前馈神经网络虽然可以达到局部二阶收敛速度,但只对小残量或零残量问题有效,对大残量问题则收敛很慢甚至不收敛.为了实时解决神经网络学习过程中可能遇到的小残量问题和大残量问题,引入拟牛顿(QuasiNewton)优化算法,并与LM(Levernberg-Marquardt)法相结合,构建基于LM-QuasiNewton法的前馈神经网络.仿真实例表明,该神经网络较好地解决了残量问题,具有良好的收敛性和稳定性.
- 基于GaussNewton-NL2SOL法的前馈神经网络及应用北大核心CSCDCSTPCD摘要:目前基于高斯牛顿法及其衍生算法的前馈神经网络虽然可以达到局部二阶收敛速度,但只对小残量或零残量问题有效,对大残量问题则收敛很慢甚至不收敛.为了实时解决神经网络学习过程中可能遇到的小残量问题和大残量问题,引入NL2SOL优化算法,并与GaussNewton法相结合,构建基于GaussNewton-NL2SOL法的前馈神经网络.仿真实例表明,该神经网络较好地解决了残量问题,具有良好的收敛性和稳定性.