相关度
- 相关度
- 发表时间
每页显示10条
- 每页显示10条
- 每页显示20条
- 每页显示30条
已找到 1 条结果
- 基于Spark和AMPSO的并行深度卷积神经网络优化算法CSCD摘要:针对并行DCNN算法在大数据环境下存在冗余参数过多、收敛速度慢、容易陷入局部最优和并行效率低的问题,提出了基于Spark和AMPSO的并行深度卷积神经网络优化算法PDCNN-SAMPSO。首先,该算法设计了基于卷积核重要性和相似度的卷积核剪枝策略(KP-IS),通过剪枝模型中冗余的卷积核,解决了冗余参数过多的问题;接着,提出了基于自适应变异粒子群优化算法的模型并行训练策略(MPT-AMPSO),通过使用自适应变异的粒子群优化算法(AM…查看全部>>