基于分层生成对抗网络的短临降水预报方法研究OACSTPCD
Research on Precipitation Nowcasting Based on Hierarchical Generative Adversarial Network
本文使用深度学习方法中的生成对抗网络(GAN)来提升短临降水预报的准确率,提出了一个基于历史雷达回波图序列预测未来雷达回波图序列的分层生成对抗网络(HGAN)方法.HGAN方法由全局生成器和局部鉴别器两部分组成,全局生成器以多子网的层次结构构建,采用上采样过程训练模型,捕捉雷达回波的演变趋势,有利于生成清晰的未来雷达回波图.局部鉴别器根据局部区域将预测的雷达回波图与观测的雷达回波图区分开,并引入缓冲区机制,保存历史预测序列,使最终预测的结果更加符合时序性.两者以对抗的方式加以训练,得到的模型能够生成足够清晰且接近真实的未来雷达回波序列,对于回波强度极值和范围的刻画更为准确.对HGAN和GAN进行测试集检验及个例分析,分析结果验证了HGAN对雷达回波预测的有效性.同时在检验反射率阈值相同的情况下,HGAN的临界成功指数命中率高于GAN,而虚警率低于GAN,且在相同预测时长下,HGAN结构相似性指数(SSIM)优于GAN.
This paper attempts to improve the accuracy of precipitation nowcasting by using generative adversarial network(GAN)method in deep learning.The hierarchical generative adversarial network(HGAN)is proposed to generate future radar echo sequences based on historical radar echo sequences.HGAN is composed of a global generator and a local discriminator.The global generator is constructed in a hierarchical structure of multiple subnets,and the model is trained using an upsampling process to capture the evolution trend of radar echoes,which is conducive to generating a clear future radar echo map.The local discriminator distinguishes the predicted radar echo map from the observed radar echo map based on the local area,and introduces a buffer mechanism to save the historical prediction se-quence so that the final prediction is more time-series compliant.Both are trained in an adversarial man-ner,and the resulting model is able to generate sufficiently clear and close to realistic future radar echo sequences for more accurate portrayal of echo intensity extremes and ranges.The test set verification and individual case analysis are performed for HGAN and GAN,and the experimental results verify the effectiveness of HGAN for radar echo prediction.Meanwhile,the critical success index and probability of detection of HGAN are higher than those of GAN,while the false alarm rate is lower than that of GAN under the same test reflectivity threshold,and the structural similarity index(SSIM)of HGAN is better than that of GAN under the same prediction duration.
曾强胜;郭敬天;任鹏;黄文华;王宁
国家海洋局北海预报中心,山东 青岛 266061||中国石油大学(华东)海洋与空间信息学院,山东 青岛 266555国家海洋局北海预报中心,山东 青岛 266061中国石油大学(华东)海洋与空间信息学院,山东 青岛 266555
大气科学
短临降水雷达回波分层生成对抗网络全局生成器局部鉴别器
precipitation nowcastingradar echohierarchical generative adversarialglobal genera-torlocal discriminator
《中国海洋大学学报(自然科学版)》 2024 (002)
23-32 / 10
国家重点研究发展计划项目(2018YFC1407002)资助Supported by the National Key Research and Development Program of China(2018YFC1407002)
评论