基于用户行为和上下文语义的分层ST-LSTM位置预测OA
Hierarchical ST-LSTM Model of Location Prediction Based on User Behavior and Contextual Semantics
当前的位置预测方法大多没有考虑到用户行为信息,由于用户的访问时间、行为模式等能够在很大程度上反映所处位置,因此在对位置潜在向量进行预训练时有必要使用该信息.进行位置预测时,采样粒度较细的序列长度较长,难以捕获长距离依赖.针对这 2 个问题,提出了基于用户行为和上下文语义的分层时空长短期记忆网络(Hierarchical Spatiotemporal Long Short-Term Memory Based on User Behavior and Contextual Semantics,CHST-LSTM)模型.该模型通过Transformer编码层处理轨迹数据,将用户相关行为信息考虑在内,融合位置的上下文语义信息,通过预训练得到位置的嵌入表征.根据用户的行为状态分割轨迹阶段,采用编码器-解码器方式对ST-LSTM进行分段分层扩展,利用BiLSTM对全局信息建模,同时处理轨迹的长短期变化,解决长序列的长距离依赖问题.对外卖员用户群体的真实移动轨迹数据进行分析和实验,通过聚类发现其特有的工作模式,在预训练时加入工作模式信息与到访时间信息,得到位置的特征向量并用于预测模型.结果表明 CHST-LSTM模型在预测用户下一位置时精度更高.
Most current location prediction methods do not take user behaviour information into account.Since the user's access time and behavior pattern can reflect the function of the location,it is necessary to use the information in the pre-training of the location potential vector.In addition,when predicting the next location,the length of fine-grained sequence is too long to capture the long-distance dependence.To solve these two problems,the model Hierarchical Spatiotemporal Long Short-Term Memory Based on User Behavior and Contextual Semantics(CHST-LSTM)is proposed for location prediction.The model processes trajectory data through Transformer encoder layer,while taking user behavior into account and integrating contextual semantic of locations.Then embedding characterization of locations are obtained through pre-training.In addition,the trajectories are segmented according to the user's state,and then the form of encoder and decoder is used to extend ST-LSTM with BiLSTM used to model the context trajectory information,for calculating the long-short term dependence of the trajectories simultaneously to solve the long distance dependence problem of long sequence.Based on the analysis and experiment of the real trajectory data of the deliverymen,the unique working mode can be found by clustering.The feature vectors of locations are obtained by adding working mode and arrival time to the location embedding algorithm,and then fused to the prediction model.The results show that CHST-LSTM is more accurate in predicting the next location of the users.
彭薇;江昊;刘卉芳;彭诗雅;廖娟
武汉大学电子信息学院,湖北武汉 430072中国联合网络通信有限公司广东省分公司,广东广州 510627
计算机与自动化
位置预测位置嵌入行为模式长距离依赖时空轨迹
location predictionlocation embeddingbehavior patternlong distance dependencespatiotemporal trajectory
《无线电工程》 2024 (001)
32-40 / 9
国家自然科学基金企业创新发展联合基金重点支持项目(U19B2004)Key Projects of National Natural Science Foundation Supported by the Joint Fund for Enterprise Innovation and Development(U19B2004)
评论