|国家科技期刊平台
首页|期刊导航|计算机技术与发展|基于类间排名相关性的解耦知识蒸馏

基于类间排名相关性的解耦知识蒸馏OACSTPCD

Decoupled Knowledge Distillation Based on Inter-class Ranking Correlation

中文摘要英文摘要

知识蒸馏(KD)从提出到现在已经取得了很大的成功,不过很多蒸馏策略都是把目光放在了中间层的特征,反而忽略了logit蒸馏的可发展性.解耦知识蒸馏(DKD)的提出使得logit蒸馏重回大众视野.不论是知识蒸馏还是解耦知识蒸馏,都是使用了强一致性约束条件从而导致蒸馏效果次优,特别是在教师网络和学生网络架构悬殊时这种现象尤为突出.针对这个问题,提出了基于类间排名关系一致性的方法.该方法保留教师和学生非目标类预测间的关系,利用类间的排名相关性作为知识蒸馏模型中代理损失和评价指标之间的关系,从而进行教师网络与学生网络的关系匹配.该方法把这种较为轻松的关系匹配扩展到解耦知识蒸馏中,并在数据集CIFAR-100 和ImageNet-1K进行验证.实验结果表明,该方法对于CIFAR-100 的分类准确率达到了77.38%,比基准方法提高了0.93 百分点,提高了解耦知识蒸馏图像分类的效果,证明了方法的有效性.同时,对比实验的结果证明该方法更具有竞争力.

Knowledge distillation has achieved great success since it was proposed,but many distillation strategies focus on the characteristics of the hidden layers and ignore the developability of logit distillation.The decoupled of knowledge distillation makes logit distillation return to public view.Both knowledge distillation and decoupled knowledge distillation use strong consistency constraints to make the distillation effect sub-optimal,especially when the teacher network and student network structure are different.To solve this problem,a method based on consistency of ranking relation between inter-classes is proposed.In this method,the relationship between teacher and student non-target class prediction is retained,and the correlation between class ranking is used as the relationship between agent loss and evaluation index in knowledge distillation model,so as to match the relationship between teacher network and student network.In this method,the relatively easy relation matching is extended to decoupled knowledge distillation and verified in CIFAR-100 and ImageNet-1K datasets.The experimental results show that the classification accuracy of the proposed method for dataset CIFAR-100 reaches77.38%,which is0.93%higher than that of the benchmark method.The effect of decoupling knowledge distillation image classification is improved,which verifies the effectiveness of the proposed method.At the same time,the results of comparative experiments show that it is more competitive.

陈颖;朱子奇;徐仕成;李敏

武汉科技大学 计算机科学与技术学院,湖北 武汉 430065

计算机与自动化

知识蒸馏解耦知识蒸馏强一致性约束关系匹配排名相关性

knowledge distillationdecoupled knowledge distillationstrong consistency constraintrelation matchranking correlation

《计算机技术与发展》 2024 (001)

52-58 / 7

国家自然科学基金资助项目(61702382)

10.3969/j.issn.1673-629X.2024.01.008

评论