|国家科技期刊平台
首页|期刊导航|中国电机工程学报|基于设备行为关联图的非侵入式多标签负荷分解改进方法

基于设备行为关联图的非侵入式多标签负荷分解改进方法OACSTPCD

An Improved Non-invasive Multi-label Load Disaggregation Method Based on Appliance Behavior Correlation Graph

中文摘要英文摘要

非侵入式负荷分解技术作为目前用户用电信息监测的主要手段,对推动能源效率提升和需求侧优化管理具有重要意义.针对目前负荷分解模型过分依赖电器本身的用电特征,而忽视用户用电习惯所提供的信息,导致分解效果始终难以改善的问题,该文提出一种考虑用户用电行为的多标签负荷分解改进方法.改进后的模型是两个网络串行的架构.第一个网络结合用户用电行为实现多标签类型识别;第二个网络在识别结果基础上完成各个在线电器的能量分解.文中通过设备行为关联图来表示用户的用电习惯.模型随用户用电不断完成行为更新,并逐渐为用户生成独特的网络图,为负荷分解提供行为依据.最后使用公开数据集REDD和REFIT对提出方法进行仿真和评估.实验结果表明,提出的方法能够准确获取各电器的用电信息,且与现有先进方法相比有明显的改进,证明了考虑用户用电行为的多标签方法是一种有效可行的负荷分解思路.

As the main means of power consumption information monitoring,non-invasive load disaggregation technology is of great significance to the improvement of energy efficiency and demand-side optimization management.In view of the fact that the current load disaggregation model relies too much on the power consumption characteristics of electrical appliances and ignores the information provided by users'electricity consumption habits,it is difficult to improve the disaggregation effect.In this paper,an improved method of multi-label energy disaggregation considering users'electrical behavior is proposed.The improved model is a serial architecture of two networks.The first network combines the electricity consumption behavior of users to realize multi-label type recognition.The second network completes the energy disaggregation of each online appliance based on the recognition results.In this paper,the user's electricity consumption habits are represented by the appliance behavior correlation graph.The model continuously updates the behavior with the electricity consumption of the users,and gradually generates a unique network graph for the user,which provides the behavior basis for the load disaggregation.Finally,the open dataset REDD and REFIT are used to simulate and evaluate the method.The experimental results show that the proposed method can accurately obtain the power consumption information of each electrical appliance,and has obvious improvement compared with the existing advanced methods.It is proved that the multi-label method considering the power consumption behavior of users is an effective and feasible idea of load disaggregation.

陈鑫沛;余涛;杨家俊;余盛灿

广东省电网智能量测与先进计量企业重点实验室(华南理工大学电力学院),广东省 广州市 510640

动力与电气工程

非侵入式负荷监测能量分解多标签识别设备行为关联图

non-intrusive load monitoringenergy disaggregationmulti-label identificationappliance behavior correlation graph

《中国电机工程学报》 2024 (001)

95-104,中插8 / 11

国家自然科学基金委员会-国家电网公司智能电网联合基金(U2066212).The Natural Science Foundation of China-Smart Grid Joint Fund of State Grid Corporation of China(U2066212).

10.13334/j.0258-8013.pcsee.221346

评论