| 注册
首页|期刊导航|四川大学学报(自然科学版)|基于多层次特征融合的Transformer人脸识别方法

基于多层次特征融合的Transformer人脸识别方法

夏桂书 朱姿翰 魏永超 朱泓超 徐未其

四川大学学报(自然科学版)2024,Vol.61Issue(1):61-68,8.
四川大学学报(自然科学版)2024,Vol.61Issue(1):61-68,8.DOI:10.19907/j.0490-6756.2024.012002

基于多层次特征融合的Transformer人脸识别方法

Transformer face recognition method based on multi-level feature fusion

夏桂书 1朱姿翰 1魏永超 2朱泓超 3徐未其3

作者信息

  • 1. 中国民用航空飞行学院航空电子电气学院,德阳 618307
  • 2. 中国民用航空飞行学院科研处,德阳 618307
  • 3. 中国民用航空飞行学院民航安全工程学院,德阳 618307
  • 折叠

摘要

Abstract

The convolutional operation in a convolutional neural network only captures local information,whereas the Transformer retains more spatial information and can create long-range connections of ima-ges.In the application of vision field,Transformer lacks flexible image size and feature scale adaptation capability.To solve this problems,the flexibility of modeling at different scales is enhanced by using hi-erarchical networks,and a multi-scale feature fusion module is introduced to enrich feature information.This paper propose an improved Swin Face model based on the Swin Transformer model.The model u-ses the Swin Transformer as the backbone network and a multi-level feature fusion model is introduced to enhance the feature representation capability of the Swin Face model for human faces.a joint loss function optimisation strategy is used to design a face recognition classifier to realize face recognition.The experimental results show that,compared with various face recognition methods,the Swin Face recognition method achieves best results on LFW,CALFW,AgeDB-30,and CFP datasets by using a hi-erarchical feature fusion network,and also has good generalization and robustness.

关键词

人脸识别/Transformer/多尺度特征/特征融合

Key words

Face recognition/Transformer/Multi-scale features/Feature fusion

分类

信息技术与安全科学

引用本文复制引用

夏桂书,朱姿翰,魏永超,朱泓超,徐未其..基于多层次特征融合的Transformer人脸识别方法[J].四川大学学报(自然科学版),2024,61(1):61-68,8.

基金项目

西藏科技厅重点研发计划(XZ202101ZY0017G) (XZ202101ZY0017G)

四川省科技厅重点研发项目(2022YFG0356) (2022YFG0356)

中国民用航空飞行学院科研基金(J2020-126,J2020-040,J2021-056) (J2020-126,J2020-040,J2021-056)

四川大学学报(自然科学版)

OA北大核心CSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文