|国家科技期刊平台
首页|期刊导航|铁道标准设计|横风下基于滚动GAPSO算法的列车速度曲线优化

横风下基于滚动GAPSO算法的列车速度曲线优化OA

Optimization of Train Speed Curve Based on Rolling GAPSO Algorithm in Cross Wind

中文摘要英文摘要

针对普通环境下高速列车目标速度曲线优化算法不适用于横风环境的问题,提出一种横风环境下基于滚动GAPSO(遗传粒子群)算法的列车速度曲线优化方法.首先,考虑横风风速阻力作用改进列车动力学模型,并建立列车运行多目标优化模型;其次,基于GAPSO算法寻优巡航构建列车在起始阶段的最优目标速度曲线,引入滚动优化框架实时调整目标速度曲线,并在横风限速区按照改进快行策略运行;最后,在列车进站前采用GAPSO算法寻优惰行点生成目标速度曲线.仿真实验结果表明:GAPSO算法较GA算法和PSO算法具有搜索能力强、收敛速度快的优点;滚动GAPSO算法能在不同横风环境下实时生成优化后的目标速度曲线,并与改进快行策略和RH-PSO算法相比,具有较优的节能性和准时性.横风下基于滚动GAPSO算法的列车目标速度曲线优化可为横风环境下列车节能、准时运行提供一种可行的解决方案.

Aiming at the problem that the target speed curve optimization algorithm of high-speed train is not suitable for the cross-wind environment in ordinary environment,a train speed curve optimization method based on rolling GAPSO(genetic particle swarm optimization)algorithm in cross-wind environment is proposed.Firstly,the train dynamics model is improved by considering the cross-wind wind resistance,and the multi-objective optimization model of train operation is established.Secondly,based on the GAPSO algorithm,the optimal target speed curve of the train in the initial stage is constructed,and the rolling optimization framework is introduced to adjust the target speed curve in real time,and the train runs according to the improved fast speed strategy in the cross-wind speed limit area.Finally,GAPSO algorithm is used to find the optimal idling point to generate the target velocity curve before the train enters the station.The simulation results show that GAPSO algorithm has the advantages of strong searching ability and fast convergence speed compared with GA algorithm and PSO algorithm.The rolling GAPSO algorithm can generate the optimized target velocity curve in real time under different cross-wind environments,and has better energy saving and punctuality than the improved fast travel strategy and RH-PSO algorithm.The optimization of train target speed curve based on rolling GAPSO algorithm under cross-wind can provide a feasible solution for train energy saving and on-time operation under cross-wind environment.

申一非;祁文哲;李德仓;陈晓强

兰州交通大学机电技术研究所,兰州 730070兰州交通大学机电工程学院,兰州 730070||甘肃省物流与运输装备行业技术中心,兰州 730070||甘肃省物流及运输装备信息化工程技术研究中心,兰州 730070兰州交通大学机电技术研究所,兰州 730070||甘肃省物流与运输装备行业技术中心,兰州 730070||甘肃省物流及运输装备信息化工程技术研究中心,兰州 730070兰州交通大学机电技术研究所,兰州 730070||兰州交通大学机电工程学院,兰州 730070||甘肃省物流与运输装备行业技术中心,兰州 730070||甘肃省物流及运输装备信息化工程技术研究中心,兰州 730070

交通运输

智能交通目标速度曲线优化方案滚动GAPSO算法横风环境

intelligent transportationtarget velocity curveoptimization schemerolling GAPSO algorithmcrosswind environment

《铁道标准设计》 2024 (003)

复杂环境下高速列车安全运行智能管控策略研究——以川藏高铁为例

21-28 / 8

国家自然科学基金项目(72061021);甘肃省自然科学基金项目(21JR7RA284);兰州交通大学校青年基金项目(2021018)

10.13238/j.issn.1004-2954.202209070003

评论