基于改进LSTM神经网络的电动汽车充电负荷预测OACSTPCD
Electric vehicle charging load prediction based on improved LSTM neural network
当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力.基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法.首先,考虑天气、季节、温度、工作日、节假日等因素对电动汽车充电负荷的影响,采用三标度层次分析法分析各影响因素权重;其次,建立LSTM神经网络预测模型,通过真实数据训练得到用于预测的LSTM神经网络模型,结合影响因素权重分析结果对预测模型进行修正,得…查看全部>>
As the current research on charging load prediction of electric vehicles(EVs)lacks support from real data,the model considers scenarios that are too simple,and the influencing factors are not fully considered,the prediction results lack persuasiveness.On this basis,a charging load prediction method for electric vehicles that considers various factors affecting the charging load of electric vehicles is proposed.Considering of the impact factors such as weathe…查看全部>>
林祥;张浩;马玉立;陈良亮
国网电力科学研究院, 江苏 南京 211000国网电力科学研究院, 江苏 南京 211000南京师范大学 电气与自动化工程学院, 江苏 南京 210023国网电力科学研究院, 江苏 南京 211000
电子信息工程
电动汽车充电负荷预测LSTM神经网络模型影响因素权重层次分析法有序充电
electric vehiclescharging load predictionLSTM neural network modelinfluencing factors weightanalytic hierarchy processorderly charging
《现代电子技术》 2024 (6)
97-101,5
评论