Banach空间中的有界算子4子空间系统OACSTPCD
BOUNDED OPERATOR FOUR SUBSPACE SYSTEMS IN BANACH SPACES
本文研究Banach空间上有界算子4子空间系统ST,说明ST与ST'同构的充要条件是T与T'相似,也说明ST是不可分解的的充要条件是T是强不可约的,最后说明当Banach空间X的共轭空间X*w*可分时,X⊕X中存在不可数多个两两不同构的不可分解的有界算子4子空间系统.这些结果是Hilbert空间上相应结果到Banach空间上的推广与补充.
This paper studies the bounded operator four subspaces systems ST in Banach spaces.It shows that ST and ST'are isomorphic if and only if T and T'are similar.It also shows that ST is indecomposable if and only if T is strongly irreducible.Finally,it shows that when the conjugate space X*of Banach space X is w*separable,there is an uncountable family of indecomposable bounded operator four subspace systems in X ⊕ X which are not isomorphic each other.These results are the generalizations and supplements of the corresponding results on Hilbert spaces to Banach spaces.
陈剑岚;阙佳华;张云南
福建师范大学数学与统计学院,福建福州 350117
数学
Banach空间有界算子系统4子空间系统强不可约算子
Banach spacesbounded operator systemsfour subspace systemsstrongly irreducible operators
《数学杂志》 2024 (002)
182-188 / 7
国家自然科学基金资助(11971108).
评论