基于体素注意力网络的电力设备目标检测模型OACSTPCD
An object detection model for power equipment based on SVGA-Net
卷积神经网络由于其有限的感受野无法高效捕捉到电力场景中避雷器、GIS进线套管等设备的上下文信息,进而影响检测效果.为解决上述问题,引入基于Transformer的体素注意力网络,提出局部注意力和空洞注意力机制来分别捕获图像体积像素中的近程和远程特征联系,在保证计算开销不增大的同时,有效扩大注意力范围.同时,设计子流形体素模块和稀疏体素模块来分别提取非空体素位置和空白体素位置上的特征信息.最后,在通用数据集Waymo和KITTI以及云南省某输变电区域的图像数据集上与主流模型进行比较,证明所提模型对于电力设备的检测具有更加优越的性能.
Convolutional neural networks(CNNs)struggle to efficiently capture contextual information of power equipment such as arresters and GIS inlet casings due to their limited receptive fields,thereby affecting detection performance.To address this issue,the paper introduces a Transformer-based voxel-graph attention network.Local attention and dilated attention mechanisms are proposed to respectively capture short-range and long-range feature correlations within image volume pixels,effectively expanding the attention scope while keeping computational costs unchanged.Additionally,submanifold voxel modules and sparse voxel modules are designed to extract feature information from non-empty voxel positions and empty voxel positions,respectively.Finally,through comparative analysis with mainstream models on the general datasets Waymo and KITTI,as well as on an image dataset from a transmission and transformation area in Yunnan Province,the superior performance of the proposed model in detect-ing power equipment is demonstrated.
陈勇;李松;晋伟平;谢珉;杨永昆
云南电网有限责任公司,昆明 650011云南电网有限责任公司红河供电局,云南 红河州 661100
注意力网络目标检测几何流形体积像素
attention networkobject detectiongeometric manifoldvolume pixel
《浙江电力》 2024 (004)
121-128 / 8
云南电网有限责任公司科技项目(YNKJXM20210149)
评论