数据驱动下基于改进生成对抗网络的滚动轴承故障诊断方法OA
Rolling Bearing Fault Diagnosis Method Based on Improved Generative Adversarial Network Driven by Data
为避免大型风电机组因滚动轴承故障影响正常运行,针对风电机组滚动轴承故障诊断与分析展开研究.考虑传统风电机组滚动故障诊断特征提取复杂、仅可辨别真伪、无法识别故障类型等问题,提出一种面向故障数据的基于改进生成对抗网络的滚动轴承故障诊断方法,在阐述传统生成对抗网络工作原理基础上,将传统生成对抗网络中的JS散度替换为Wassserstein距离,形成Wassseratein GAN-GP.以此为基础构建滚动轴承故障诊断模型,利用梯度惩罚方法对诊断模型进行优化,解决模型训练过程中存在的梯度消失问题,在实现学习原始数据分布的基础上,进一步对训练样本集进行扩充.最后设置不平衡数据情况下的实验,结果证明提出滚动轴承故障诊断方法切实有效,可有效降低不平衡与训练数据不足对故障诊断造成的影响.
To avoid the impact of rolling bearing faults on the normal operation of large wind turbines,research is conducted on the diagnosis and analysis of rolling bearing faults in wind turbines.Considering the complex feature extraction of traditional wind turbine rolling fault diagnosis,which can only distinguish true and false,and cannot identify fault types,a rolling bearing fault diagnosis method based on improved generative adversarial network for fault data is proposed.On the basis of explaining the working principle of traditional generative adversarial network,the JS divergence in the traditional generative adversarial network is replaced by the Wasserstein distance,forming the Wasseratein GAN-GP.Based on this,a rolling bearing fault diagnosis model is constructed,and the diagnosis model is optimized using gradient penalty method to solve the problem of gradient vanishing during model training.On the basis of learning the distribution of raw data,the training sample set is further expanded.Finally,experiments are conducted under the condition of imbalanced data,and the results show that the proposed rolling bearing fault diagnosis method is practical and effective,which can effectively reduce the impact of imbalanced and insufficient training data on fault diagnosis.
颜毅斌;管俊杰;吉天平
湖南铁路科技职业技术学院,湖南株洲 412006
机械工程
故障数据滚动轴承生成对抗网络故障诊断
fault datarolling bearingsgenerative adversarial networkfault diagnosis
《机电工程技术》 2024 (005)
207-210 / 4
湖南省自然科学基金资助项目(2022JJ60074);湖南省教育厅资助科研项目(22C1118)
评论