|国家科技期刊平台
首页|期刊导航|机械科学与技术|小波变换和深度残差收缩网络在齿轮箱故障诊断中的应用

小波变换和深度残差收缩网络在齿轮箱故障诊断中的应用OA北大核心CSTPCD

Application of Wavelet Transform and Deep Residual Shrinkage Network in Gearbox Fault Diagnosis

中文摘要英文摘要

齿轮的精确故障诊断是确保旋转机械设备稳定可靠运行的有效手段,针对强噪声环境下齿轮箱中齿轮故障分类问题,提出了一种基于连续小波变换和深度残差收缩网络的故障诊断模型.首先,采用小波变换对一维时间序列的振动数据进行时频分析,将其转化为二维时频图作为深度残差收缩网络(DRSN)的输入;其次,在多层卷积神经网络的基础上加入残差结构中的跨层恒等连接解决了梯度消失和爆炸的问题,同时利用自适应阈值子网络实现软阈值化降噪;最后,将故障样本的时频图作为诊断模型的输入进行故障分类.实验结果证明了与其他模型相比,本文采用的故障诊断方法更容易识别故障特征,分类准确率达到了 99.15%.

Accurate fault diagnosis of gears is an effective means to ensure stable and reliable operation of rotating machinery.Aiming at the problem of gear fault classification in gearboxes under strong noise environment,a fault diagnosis model based on continuous wavelet transform and deep residual shrinkage network is proposed.Firstly,wavelet transform is used to analyze the vibration data of one-dimensional time series,and it is converted into a two-dimensional time-frequency map as the input of the deep residual shrinkage network(DRSN).Secondly,based on the multi-layer convolutional neural network,the cross-layer identity connection in the residual structure is added to solve the problem of gradient disappearance and explosion,and then the adaptive threshold sub-network is used to achieve soft threshold noise reduction.Finally,the time-frequency map of the fault sample is used as the input of the diagnosis model to achieve fault classification.The experimental results show that compared with other models,the fault diagnosis method is easier to identify fault features,and the classification accuracy rate reaches 99.15%.

翁敏超;王海瑞;朱贵富

昆明理工大学信息工程与自动化学院,昆明 650500

机械工程

齿轮箱时频分析深度残差收缩网络(DRSN)故障诊断

gearboxtime-frequency analysisDRSNfault diagnosis

《机械科学与技术》 2024 (005)

790-797 / 8

国家自然科学基金项目(61863016,61263023)

10.13433/j.cnki.1003-8728.20230054

评论