| 注册
首页|期刊导航|食品科学|基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法

基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法

丁浩晗 沈嵩 谢祯奇 崔晓晖 王震宇

食品科学2024,Vol.45Issue(10):9-18,10.
食品科学2024,Vol.45Issue(10):9-18,10.DOI:10.7506/spkx1002-6630-20240129-262

基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法

Detection of Dispersibility and Bulk Density of Instant Whole Milk Powder Based on Residual Network

丁浩晗 1沈嵩 2谢祯奇 2崔晓晖 3王震宇4

作者信息

  • 1. 江南大学未来食品科学中心,江苏无锡 214122||江南大学人工智能与计算机学院,江苏无锡 214122
  • 2. 江南大学人工智能与计算机学院,江苏无锡 214122
  • 3. 江南大学未来食品科学中心,江苏无锡 214122||武汉大学国家网络安全学院,湖北武汉 430072
  • 4. 嘉兴未来食品研究院,浙江嘉兴 314005
  • 折叠

摘要

Abstract

To address the problems of the traditional international standard methods for milk powder quality detection such as subjectivity and lag,this study proposed a rapid method for the detection of the dispersibility and bulk density of milk powder based on residual network(ResNet).The dataset used in this study included 499 particle distribution images taken for 10 groups of instant whole milk powder samples under a 10 × optical microscope.Initially,these sample groups were tested for dispersibility and bulk density using the international standard methods,and classified into different levels of dispersibility and bulk density based on the test results.Subsequently,these microscopic images were used to train the ResNet to facilitate effective classification of different samples.Ultimately,the classification results were used to predict the dispersibility,loose density,and tapped density of instant whole milk powder.Additionally,this study compared the predictive performance of different deep learning models,including ResNet,EfficientNetV2,and Swin Transformer.The results indicated that the deep learning model based on ResNet 152 exhibited the best performance in predicting the dispersibility,loose density,and tapped density of instant whole milk powder,with accuracy rates of 97.50%,98.75%,and 95.00%,respectively for the test set.The exceptional performance of these deep learning models in milk powder quality detection not only proves that this method can predict the dispersibility and bulk density of milk powder in real time and accurately,but also provides a new technological approach for online quality detection of milk powder.

关键词

速溶全脂奶粉/分散性/堆积密度/深度学习/残差网络

Key words

instant whole milk powder/dispersibility/bulk density/deep learning/residual network

分类

轻工业

引用本文复制引用

丁浩晗,沈嵩,谢祯奇,崔晓晖,王震宇..基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法[J].食品科学,2024,45(10):9-18,10.

基金项目

"十四五"国家重点研发计划重点专项(2022YFF1101100) (2022YFF1101100)

中央高校基本科研业务费专项资金资助项目(JUSRP123053) (JUSRP123053)

跨境网络空间安全教育部工程研究中心2023年度开放课题(KJAQ202304007) (KJAQ202304007)

食品科学

OA北大核心CSTPCD

1002-6630

访问量0
|
下载量0
段落导航相关论文