| 注册
首页|期刊导航|茶叶科学|TTLD-YOLOv7:非结构化环境下茶树病害的检测算法

TTLD-YOLOv7:非结构化环境下茶树病害的检测算法

俞淑燕 杜晓晨 冯海林 李颜娥

茶叶科学2024,Vol.44Issue(3):453-468,16.
茶叶科学2024,Vol.44Issue(3):453-468,16.

TTLD-YOLOv7:非结构化环境下茶树病害的检测算法

TTLD-YOLOv7:An Algorithm for Detecting Tea Diseases in An Unstructured Environment

俞淑燕 1杜晓晨 1冯海林 1李颜娥1

作者信息

  • 1. 浙江农林大学数学与计算机科学学院,浙江 杭州 311300
  • 折叠

摘要

Abstract

Tea diseases have an extremely serious impact on tea plantations and related industries.Traditional methods for disease detection in the dynamic and complex tea plantation environment are inefficient and unsatisfactory.This study proposed that a YOLOv7-tiny-based model enhanced the fine-grained detection of tea tree diseases.By integrating CoordConv and ECA channel attention mechanisms,this model achieved higher spatial recognition capability in convolutional feature maps and reduced the effect of background noise on feature recognition.Further improvements included the use of a normalized Wasserstein distance metric and decoupled heads to improve the detection of small spots.A new anchor frame was generated using the K-means algorithm based on the specificity of tea spots to improve the accuracy and generalizability of the model.Comparative analysis shows that the model outperforms the existing models Faster R-CNN,SSD,YOLOv5s,YOLO-Tea,YOLOv7-tiny,and YOLOv7,with an average accuracy improvement of 5.9 percentage points to 93%.The improved model could be applied to tea disease monitoring.

关键词

茶树病害/YOLOv7-tiny/自然环境/目标检测

Key words

tea diseases/YOLOv7-tiny/natural environment/object detection

分类

农业科技

引用本文复制引用

俞淑燕,杜晓晨,冯海林,李颜娥..TTLD-YOLOv7:非结构化环境下茶树病害的检测算法[J].茶叶科学,2024,44(3):453-468,16.

基金项目

浙江省"三农九方"科技协作项目(2022SNJF036) (2022SNJF036)

茶叶科学

OA北大核心CSTPCD

1000-369X

访问量4
|
下载量0
段落导航相关论文